Контрольная работа: Интегрирование уравнений движения материальной точки, находящейся под действием переменных сил
a = 60, см
b = 40, см
c = 60, см
Определить:
Реакции опор конструкции.
Решение:
К раме ABCD приложены сила тяжести , сила , реакция стержня DC и реакции опор A и B. Реакция шарового шарнира А определяется тремя составляющими: , а реакция петли В двумя: .
Из этих сил – шесть неизвестных. Для их определения можно составить 6 уравнений равновесия.
Уравнения моментов сил относительно координатных осей:
Уравнения проекций сил на оси координат:
Из этих уравнений находим: решая уравнения, находим неизвестные реакции.
Результаты вычислений заносим в таблицу:
Силы, кН | |||||
S | XA | YA | ZA | XB | ZB |
1.15 | -6.57 | 0.57 | -1 | -12.57 | 2 |
Проверка:
Проверка показала, что реакции опор твердого тела найдены правильно.
В 18. Д – 1.
Дано: VA = 0, a = 30°, f = 0,1, ℓ = 2 м, d = 3 м. Найти: h и t.
Решение: Рассмотрим движение камня на участке АВ. На него действуют силы тяжести G, нормальная реакция N и сила трения F.Составляем дифференциальное уравнение движения в проекции на ось X1 : = G×sina - F , (F = f×N = fG×cosa) Þ= g×sina - fg×cosa,
Дважды интегрируя уравнение, получаем:
= g×(sina - f×cosa)×t + C1 , x1 = g×(sina - f×cosa)×t2 /2 + C1 t + C2 ,
По начальным условиям (при t = 0 x10 = 0 и = VA = 0) находим С1 и С2 : C1 = 0 , C2 = 0,
Для определения VB и t используем условия: в т.B (при t = t) , x1 = ℓ , = VB . Решая систему уравнений находим:
x1 = ℓ = g×(sina - f×cosa)×t2 /2 Þ 2 = 9,81×(sin30° - 0,1×cos30°)×t2 /2 , Þt = 0,99 c ,
= VB = g×(sina - f×cosa)×t VB = 9,81×(sin30° - 0,1×cos30°)×0,99 = 4,03 м/с ,
Рассмотрим движение камня на участке ВС.На него действует только сила тяжести G. Составляем дифференциальные уравнения движения
в проекции на оси X , Y : = 0 , = G ,