Контрольная работа: Исчисления предикатов и их применение в логическом умозаключении

6. РАСШИРЕННОЕ ИСЧИСЛЕНИЕ ПРЕДИКАТОВ

В узком исчислении предикатов переменные являются пропозициональные переменные, именные переменные и переменные представляющие предикаты. В формулах этого исчисления кванторы связывают только именные переменные. Это исчисление явно не завершено. Например, формула " R " х (Р(х) Ú Р(х)) выполняется для любого предиката Р . значит, мы должны располагать квантором общности для предиката. С другой стороны формула " хF(х) явно не общезначима. Но она выполняется для некоторых F . Чтобы выразить это мы должны располагать и кванторами существования для предиката, и выполнимость этой формулы записать так: $ F " хF(х).

Исчисление предикатов, получаемое посредством применения квантора общности и квантора существования не только к предметным переменным, но и к переменным предикатам, принято называть расширенным исчислением предикатов. Очевидно, что все правила узкого исчисления предикатов распространяются как на расширенное исчисление предикатов, так и на любую систему, получаемую присоединением к расширенному исчислению предикатов каких угодно аксиом и новых правил образования истинных формул. Справедливость этого ясна, так как все аксиомы и правила вывода исчисления предикатов, на основании которых выведены производные правила, во всех случаях сохраняются.

Смешение символов для разных формул не может произойти, так как из контекста, обычно, видно, в каком формализме выводится та или иная формула.

Расширенное исчисление предикатов и полученные из него некоторые системы посредством добавления к его аксиомам аксиом специальной структуры дали возможность получить очень важные результаты в теории множеств, геометрии, арифметике, теории алгоритмов и во многих других областях. Однако как показали К. Гедель и др., проблема разрешимости в таких системах становится очень запутанной. И все дело в том, что, формализуя словесный оборот «все» с помощью квантора " мы пытаемся заключить бесконечное в конечные рамки. Но при этом мы можем рассчитывать лишь на частный успех.

Алгоритмическая неразрешимость расширенного исчисления предикатов, формализованной теории множеств, формализованной арифметики и других формальных систем лишний раз доказывает, что математика не является нанизыванием силлогизмов в направлении, избранном наугад. Алгоритмическая неразрешимость показывает, что математическое исследование включает в себя интуицию, догадку, воображение и другие элементы творчества!


Литература

1. Логическое суждение. Руфулаев О.Н. К. – 2005 г.

2. Логика – исскуство мышления. Тимирязев А.К.– К. 2000 г.

3. Философия и жизнь – журнал- К. 2004 г.

4. История логики и мышления – Касинов В.И. 1999.

5. Логика и человек – М. 2000.

6. Философия жизни. Матюшенко В.М. – Москва – 2003 г.

7. Философия бытия. Марикова А.В. – К. 2000 г.

К-во Просмотров: 289
Бесплатно скачать Контрольная работа: Исчисления предикатов и их применение в логическом умозаключении