Контрольная работа: Криволинейный интеграл первого и второго рода
Теорема: -непрерывны в области , тогда для того, чтобы
в (рис. 6)
Рис. 6
Пусть
Обратно
Т.д.
Пусть из непрерывности и
-окрестность точки такая что в
предположение неверно. ч.т.д.
Замечание.
Определение. Функция -градиент которой есть вектор силы называется потенциалом вектора .
Тогда
Вывод: Криволинейный интеграл от полного дифференциала не зависит от формы пути интегрирования.
Литература
1. Ильин В.А., Садовничий В.А., Сендов Б.Х. Математический анализ. 1-2 том. Изд. МГУ, 1989 г.
2. Виноградова И.А., Олексич С.Н., Садовничий В.А. Задачи и упражнения по математическому анализу. Часть 1,2 Изд. МГУ. Серия классический университетский учебник 250 летию МГУ 2005 г.
3. Шилов Г.Е. Математический анализ. Часть 1,2. Москва. Изд. Лань. 2002 г. – 880 с.
4. Лунгу К.Н. Сборник задач по математике. Часть 1,2. Москва. Айрис пресс 2005 г.