Контрольная работа: Линейная алгебра и математическое программирование

40

15

6

160

4

200

3

250

25

20

10

10

240

15

18

Число занятых клеток в таблице, приведенной выше, равно m + n – 1 = 5 + 3 – 1 = 7, то есть условие невырожденности выполнено. Получили исходное решение, которое запишем в виде матрицы

Х1 =

Стоимость перевозки при исходном решении составляет

f1 = 175 * 5 + 175 * 15 + 40 * 10 + 160 * 6 + 200 * 4 + 10 * 20 + 240 * 10 = 8260.

Проверим найденное решение транспортной задачи на оптимальность Найденное исходное решение проверяется на оптимальность методом потенциалов по следующему критерию: если решение транспортной задачи является оптимальным, то ему соответствует система m+n ( 5 + 3 = 8 ) действительных чисел и , удовлетворяющих условиям для занятых клеток и – для свободных клеток.

Числа и называются потенциалами. В распределительную таблицу добавляют столбец и строку .

Потенциалы и находят из равенства , справедливого для занятых клеток. Одному из потенциалов дается произвольное значение, например , тогда остальные потенциалы определяются однозначно. Так, если известен потенциал , то ; если известен потенциал , то .

Обозначим . Эту оценку называют оценкой свободных клеток. Если , то опорное решение является оптимальным. Если хотя бы одна из оценок , то решение не является оптимальным и его можно улучшить, перейдя от одного решения к другому.

Проверим найденное решение на оптимальность, добавив в распределительную таблицу, приведенную ниже, столбец и строку .

Полагая , запишем это значение в последнем столбце
таблицы.


bi

ai

1 2 3 4 5
175 225 240 160 200 𝛼i

1

350

5

175

15

175

К-во Просмотров: 301
Бесплатно скачать Контрольная работа: Линейная алгебра и математическое программирование