Контрольная работа: Линейная модель множественной регрессии
по всей выборке
23 | 510,1700 | 1306,5000 | |
510,1700 | 11344,4995 | 29032,7645 | |
1306,5000 | 29064,5645 | 74660,5000 |
Обратная | 16,9368 | -0,6252 | -0,0533 |
-0,8478 | 0,0549 | -0,0065 | |
0,0336 | -0,0104 | 0,0035 |
13715,6600 | |
305186,0672 | |
781955,1640 |
-152,2248 | |
А = | 33,8819 |
-0,0526 |
Y =-152,2248+33,8819*X1-0,0526*X2
за период возрастания индекса (первые 14 наблюдений)
14 | 320,0900 | 808,3500 | |
320,0900 | 7329,1023 | 18527,9690 | |
808,3500 | 18527,9690 | 47050,7575 |
Обратная | 58,3597 | -3,1314 | 0,2305 |
-3,1314 | 0, 1983 | -0,0243 | |
0,2305 | -0,0243 | 0,0056 |
8661,2500 | |
198238,8637 | |
501570,9840 |
295,8791 | |
А= | 6,1272 |
3,1641 |
Y =295,8791+6,1272*X1+3,1641*X2
за период убывания индекса (последние 10)
10 | 213,3200 | 558,4000 | |
213,3200 | 4563,2348 | 11936,8055 | |
558,4000 | 11936,8055 | 31239,8050 |
Обратная | 56,1080 | 1, 1991 | -1,4611 |
1, 1991 | 0,4902 | -0, 2088 | |
-1,4611 | -0, 2088 | 0,1059 |
5698,8900 | |
122039,6387 | |
319214,1000 |
-309,1111 | |
А = | 24,5941 |
6,3460 |
Y =-309,1111+24,5941*X1+6,3460*X2
Согласно первому уравнению, при увеличении цены акции ЛукОйл на 1 дол., РТС индекс возрастает на 33,8819 пункта; при увеличении цены акции НорНикель ГМК на 1 дол. уменьшится на 0,0526 пункта.
Согласно второму уравнению, при увеличении цены акции ЛукОйл на 1 дол., РТС индекс возрастет на 6,1272 пункта; при увеличении цены акции НорНикель ГМК на 1дол. возрастает на 3,1641 пункта.
Согласно третьему уравнению, при увеличении цены акции ЛукОйл на 1 дол., РТС индекс возрастет на 24,5941 пункта; при увеличении цены акции НорНикель ГМК на 1 дол. возрастает на 6,3460 пункта.
Этап. Верификация модели
На этапе верификации модели выполняется сопоставление модельных и реальных данных. Проверка адекватности модели, оценка точности модельных данных.
Проблема верификации заключается в решении вопроса о том, можно ли рассчитывать, что использование построенной модели даст результаты достаточно совпадающие с реальностью.
Наиболее распространенный подход верификации эконометрической модели - это ретроспективные расчеты.
Все исходные статистические данные за n- периодов времени делятся на две части:
обучающая выборка размерности n- j
экзаменующая выборка j
По данным обучающей выборки строится модель
С помощью модели осуществляется прогноз на jследующих периодов
Сравниваются прогнозные значения с реальными из экзаменующей выборки. Проводится анализ, оценивается точность
Проверка общего качества уравнения регрессии
Первый показатель - стандартная ошибка оценки Y.
Второй показатель - коэффициент детерминации, он характеризует долю общей вариации результирующего признака объясненную поведением выборочной функции регрессии.
При росте числа регрессоров значение R2 возрастает, однако качество описание исходных данных регрессионного уравнения может при этом не улучшиться, чтобы устранить этот подобный эффект проводят корректировку этого показателя на число регрессоров.
Проверка статистической значимости коэффициентов
Рассчитываются ошибки коэффициентов регрессии, для этого строятся ковариационные матрицы оценок. На главной диагонали матрицы стоят квадраты ошибок коэффициентов.