Контрольная работа: Линейные регрессионные модели

График 3. Линейный тренд.

График 4. Полиномиальный тренд.

График 5. Степенной тренд.


График 6. Экспоненциальный тренд.

Таблица 9.

Тип тренда

Уравнение

Линейный

0,0016

Полиномиальный

0,1371

Степенной

0,0125

Экспоненциальный

0,0016

Итак, рассмотрим модель тренда. Но у показателя Y явно нет никакой тенденции (тренда), так как для =0.1371<0,3. Модель неудачна.

4. Используя значимые в целом и по параметрам модели (с приемлемым уровнем значимости), для которых выполняются все предпосылки метода наименьших квадратов (свойств остатков), получит прогнозы изучаемого показателя на два следующих месяца.

Модели , значимы в целом и по параметрам и для них выполняются все предпосылки МНК. По этим моделям можно строить прогнозы изучаемого показателя. Различают точечный и доверительный прогнозы показателя. Точечный прогноз получают путем подстановки в уравнение регрессии значения фактора x, и он имеет нулевую вероятность. Этот прогноз полезен при формировании доверительного прогноза.

Пусть в модели Х5 в последующих два будет увеличиваться на столько на сколько и в прошлом месяце 1,7% (в% к предыдущему периоду). Значит Х5 в следующем периоде уменьшится на 1%.

1,017*101,69103,41

К-во Просмотров: 606
Бесплатно скачать Контрольная работа: Линейные регрессионные модели