Контрольная работа: Линейные уравнения парной и множественной регрессии
-0,003619876
На основании этих данных запишем уравнение регрессии: .
Коэффициент называется выборочным коэффициентом регрессии Коэффициент регрессии показывает, на сколько единиц в среднем изменяется переменная при увеличении переменной на одну единицу.
Таблица №5. Корреляционная матрица
Столбец 1 |
Столбец 2 | |
Столбец 1 |
1 | |
Столбец 2 |
-0,010473453 |
1 |
Для оценки качества уравнения регрессии в целом необходимо проверить статистическую значимость индекса детерминации: проверяется нулевая гипотеза , используется .
Таблица №6
Регрессионная статистика | ||
R-квадрат |
0,000109693 |
.
Т.к. Значение детерминации R-квадрат имеет малое значение, которое менее 1%, то дальнейшее решение не имеет смысла, т.к. вероятность того что прогноз будет верным меньше 1%.
Задача №2
Используя данные, приведенные в таблице: построить линейное уравнение множественной регрессии;
1) оценить значимость параметров данного уравнения и построить доверительные интервалы для каждого из параметров, оценить значимость уравнения в целом, пояснить экономический смысл полученных результатов;
2) рассчитать линейные коэффициенты частной корреляции и коэффициент множественной детерминации, сравнить их с линейными коэффициентами парной корреляции, пояснить различия между ними;
3) вычислить прогнозное значение y при уменьшении вектора x на 6 % от максимального уровня, оценить ошибку прогноза и построить доверительный интервал прогноза;
Таблица №5
номер наблюдения, i |
Накопления семьи, Y (y.e.) |
Доход семьи, X1 ( y. e.) |
Расходы на питание, X 2 ( y. e.) |
1 |
2 |
К-во Просмотров: 759
Бесплатно скачать Контрольная работа: Линейные уравнения парной и множественной регрессии
|