Контрольная работа: Линейные уравнения парной и множественной регрессии

-5,313097658

1,777526094

0,047297697

0,418287538

-0,249694323

0,748774142

3. Значения парных коэффициентов корреляции найдем из соответствующей матрицы.

Таблица №10 Корреляционная матрица

y

x1

x2

y

1

x1

0,784786247

1

x2

0,60206001

0,531178469

1

По величине парных коэффициентов корреляции может обнаруживаться лишь явная коллинеарность факторов. Наибольшие трудности в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью , т.е. имеет место совокупное воздействие факторов друг на друга.

Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой и нельзя оценить воздействие каждого фактора в отдельности. Чем сильнее мультиколлинеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью метода наименьших квадратов (МНК).

Частные коэффициенты корреляции найдем по формулам

,

,

их значения показывают, что при отсутствии влияния других факторов, связь с рассматриваемым фактором усиливается т.е. мультиколлинеарность между ними существует.

4. Рассчитаем прогнозное значение результата, если прогнозные значения факторов составляют 110% их максимального значения. Найдем прогнозные значения факторов и подставим их в полученное уравнение регрессии.

По условию прогнозные значения составляют 110% их максимального значения.


Таблица №11

К-во Просмотров: 762
Бесплатно скачать Контрольная работа: Линейные уравнения парной и множественной регрессии