Контрольная работа: Линейные уравнения парной и множественной регрессии
-5,313097658
1,777526094
0,047297697
0,418287538
-0,249694323
0,748774142
3. Значения парных коэффициентов корреляции найдем из соответствующей матрицы.
Таблица №10 Корреляционная матрица
y |
x1 |
x2 | |
y |
1 | ||
x1 |
0,784786247 |
1 | |
x2 |
0,60206001 |
0,531178469 |
1 |
По величине парных коэффициентов корреляции может обнаруживаться лишь явная коллинеарность факторов. Наибольшие трудности в использовании аппарата множественной регрессии возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью , т.е. имеет место совокупное воздействие факторов друг на друга.
Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестает быть полностью независимой и нельзя оценить воздействие каждого фактора в отдельности. Чем сильнее мультиколлинеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью метода наименьших квадратов (МНК).
Частные коэффициенты корреляции найдем по формулам
,
,
их значения показывают, что при отсутствии влияния других факторов, связь с рассматриваемым фактором усиливается т.е. мультиколлинеарность между ними существует.
4. Рассчитаем прогнозное значение результата, если прогнозные значения факторов составляют 110% их максимального значения. Найдем прогнозные значения факторов и подставим их в полученное уравнение регрессии.
По условию прогнозные значения составляют 110% их максимального значения.
Таблица №11
К-во Просмотров: 762
Бесплатно скачать Контрольная работа: Линейные уравнения парной и множественной регрессии
|