Контрольная работа: Математические методы и модели
Вывод: Согласно критерию Гурвица стратегия СЕ обеспечивает максимальное значение линейной комбинации
Критерий Сэвиджа
Чтобы оценить, насколько то или иное состояние природы влияет на исход в соответствии с критерием Сэвиджа вводится показатель риска(r ij), определяемый как разность между максимально возможным выигрышем при данном состоянии (Rj) и выигрышем при выбранной стратегии (Si)
; при ,
где rij - показатель риска;
bj - максимально возможный выигрыш;
x ij - выигрыш при выбранной стратегии
На этой основе строят матрицу рисков, которая показывает "сожаление между действительным выбором и наиболее благоприятным, если бы были известны намерения природы". Затем выбирается такая стратегия, при которой величина риска принимает минимальное значение в самой неблагоприятной ситуации
Без риска | С риском | Без риска | С риском | Без риска | С риском | Без риска | С риском | Без риска | С риском | Без риска | С риском | Max rij | |
1 | 2 | 3 | 4 | 5 | 6 | ||||||||
А | 100 | 90 | 120 | 30 | 130 | 20 | 130 | 40 | 120 | 30 | 110 | 40 | 90 |
Б | 110 | 80 | 90 | 60 | 150 | 0 | 120 | 50 | 120 | 30 | 100 | 50 | 80 |
В | 150 | 40 | 150 | 0 | 100 | 50 | 90 | 80 | 100 | 50 | 90 | 60 | 80 |
Г | 130 | 70 | 100 | 50 | 110 | 40 | 120 | 50 | 120 | 30 | 110 | 40 | 70 |
Д | 150 | 40 | 110 | 40 | 110 | 40 | 100 | 70 | 130 | 20 | 150 | 0 | 70 |
Е | 190 | 0 | 90 | 60 | 100 | 50 | 170 | 0 | 120 | 30 | 90 | 40 | 60 |
Ж | 100 | 90 | 140 | 10 | 140 | 10 | 140 | 50 | 130 | 20 | 100 | 50 | 90 |
З | 120 | 70 | 150 | 0 | 130 | 20 | 130 | 40 | 120 | 30 | 90 | 60 | 70 |
И | 140 | 50 | 120 | 30 | 130 | 20 | 120 | 50 | 150 | 0 | 100 | 50 | 50 |
мах | 190 | 150 | 150 | 170 | 150 | 150 |
S = 50
Вывод: В соответствие с критерием рекомендуемая стратегия СИ, выбирая её в самом худшем случаи наше сожаление не превысит 50.д.ед.
2.2При заданном распределении состояний факторов внешней среды определить стандартные статистические показатели (среднюю ожидаемую прибыль, дисперсию, коэффициент вариации прибыли) и обосновать выбор стратегии по индивидуальному отношению к риску.
0,2 | 0,4 | 0,1 | 0,2 | 0,05 | 0,05 | |
1 | 2 | 3 | 4 | 5 | 6 | |
А | 100 | 120 | 130 | 130 | 120 | 110 |
Б | 110 | 90 | 150 | 120 | 120 | 100 |
В | 150 | 150 | 100 | 90 | 100 | 90 |
Г | 130 | 100 | 110 | 120 | 120 | 110 |
Д | 150 | 110 | 110 | 100 | 130 | 150 |
Е | 190 | 90 | 100 | 170 | 120 | 90 |
Ж | 100 | 140 | 140 | 140 | 130 | 100 |
З | 120 | 150 | 130 | 130 | 120 | 90 |
И | 140 | 120 | 130 | 120 | 150 | 100 |
Вычислим среднюю ожидаемую прибыль по формуле:
МА=100*0,2+120*0,4+130*0,1+130*0,2+120*0,05+110*0,05=118,5
МБ=110*0,2+90*0,4+150*0,1+120*0,2+120*0,05+100*0,05=108
МВ=150*0,2+150*0,4+100*01+90*0,2+100*0,05+90*0,05=127,5
МГ=130*0,2+100*0,4+110*0,1+120*0,2+120*0,05+110*0,05=112,5
МД=150*0,2+110*0,4+110*0,1+100*0,2+100*0,05+150*0,05=119
МЕ=190*0,2+90*0,4+100*0,1+170*0,2+120*0,05+90*0,05=128,5
МЖ=100*0,2+140*0,4+140*0,1+140*0,2+130*0,05+100*0,05=129,5
МЗ=120*0,2+150*0,4+130*0,1+130*0,2+120*0,05+90*0,05=133,5
МИ=140*0,2+120*0,4+130*0,1+120*0,2+150*0,05+100*0,05=125,5
Вычислим среднее квадратичное (стандартное) отклонение:
где s - стандартное отклонение;
Ax - результат для вероятности Px;
a - среднее ожидаемое значение результата;
Px - вероятность появления этого результата