Контрольная работа: Математические методы и модели

Вывод: Согласно критерию Гурвица стратегия СЕ обеспечивает максимальное значение линейной комбинации

Критерий Сэвиджа

Чтобы оценить, насколько то или иное состояние природы влияет на исход в соответствии с критерием Сэвиджа вводится показатель риска(r ij), определяемый как разность между максимально возможным выигрышем при данном состоянии (Rj) и выигрышем при выбранной стратегии (Si)

; при ,

где rij - показатель риска;

bj - максимально возможный выигрыш;

x ij - выигрыш при выбранной стратегии

На этой основе строят матрицу рисков, которая показывает "сожаление между действительным выбором и наиболее благоприятным, если бы были известны намерения природы". Затем выбирается такая стратегия, при которой величина риска принимает минимальное значение в самой неблагоприятной ситуации

Без риска С риском Без риска С риском Без риска С риском Без риска С риском Без риска С риском Без риска С риском Max rij
1 2 3 4 5 6
А 100 90 120 30 130 20 130 40 120 30 110 40 90
Б 110 80 90 60 150 0 120 50 120 30 100 50 80
В 150 40 150 0 100 50 90 80 100 50 90 60 80
Г 130 70 100 50 110 40 120 50 120 30 110 40 70
Д 150 40 110 40 110 40 100 70 130 20 150 0 70
Е 190 0 90 60 100 50 170 0 120 30 90 40 60
Ж 100 90 140 10 140 10 140 50 130 20 100 50 90
З 120 70 150 0 130 20 130 40 120 30 90 60 70
И 140 50 120 30 130 20 120 50 150 0 100 50 50
мах 190 150 150 170 150 150

S = 50

Вывод: В соответствие с критерием рекомендуемая стратегия СИ, выбирая её в самом худшем случаи наше сожаление не превысит 50.д.ед.

2.2При заданном распределении состояний факторов внешней среды определить стандартные статистические показатели (среднюю ожидаемую прибыль, дисперсию, коэффициент вариации прибыли) и обосновать выбор стратегии по индивидуальному отношению к риску.

0,2 0,4 0,1 0,2 0,05 0,05
1 2 3 4 5 6
А 100 120 130 130 120 110
Б 110 90 150 120 120 100
В 150 150 100 90 100 90
Г 130 100 110 120 120 110
Д 150 110 110 100 130 150
Е 190 90 100 170 120 90
Ж 100 140 140 140 130 100
З 120 150 130 130 120 90
И 140 120 130 120 150 100

Вычислим среднюю ожидаемую прибыль по формуле:

МА=100*0,2+120*0,4+130*0,1+130*0,2+120*0,05+110*0,05=118,5

МБ=110*0,2+90*0,4+150*0,1+120*0,2+120*0,05+100*0,05=108

МВ=150*0,2+150*0,4+100*01+90*0,2+100*0,05+90*0,05=127,5

МГ=130*0,2+100*0,4+110*0,1+120*0,2+120*0,05+110*0,05=112,5

МД=150*0,2+110*0,4+110*0,1+100*0,2+100*0,05+150*0,05=119

МЕ=190*0,2+90*0,4+100*0,1+170*0,2+120*0,05+90*0,05=128,5

МЖ=100*0,2+140*0,4+140*0,1+140*0,2+130*0,05+100*0,05=129,5

МЗ=120*0,2+150*0,4+130*0,1+130*0,2+120*0,05+90*0,05=133,5

МИ=140*0,2+120*0,4+130*0,1+120*0,2+150*0,05+100*0,05=125,5

Вычислим среднее квадратичное (стандартное) отклонение:

где s - стандартное отклонение;

Ax - результат для вероятности Px;

a - среднее ожидаемое значение результата;

Px - вероятность появления этого результата

К-во Просмотров: 309
Бесплатно скачать Контрольная работа: Математические методы и модели