Контрольная работа: Математические модели физико-химических процессов
Эти формулы справедливы для изотермических условий потока жидкости или газа. Если температура потока отличается от температуры стенки трубы, числовые значения коэффициентов λ следует умножать на величину k, которая также зависит от режима течения потока.
При определении потери напора необходимо учитывать местные сопротивления (в сужениях, на расширении и закруглении труб, в кранах, вентилях и пр.). Коэффициенты местных сопротивлений определяют опытным путем.
Коэффициент местного сопротивления при входе в трубе зависит от формы входной кромки трубы. Если края острые, то ζ=0,5; если они тупые, то ζ=0,25; при закругленной кромке трубы ζ в зависимости от радиуса закругления и шероховатости стенок трубы колеблется в пределах 0,06 – 0,005. При выходе из трубы коэффициент местного сопротивления может быть принят ζ=1
При внезапном расширении трубы коэффициент местного сопротивления зависит от отношения узкого сечения f1 трубы к ее широкому сечению f2 и может быть принят равным в пределах от 0 (f1 /f2 =1) до 0,81 (f1 /f2 =0,1)
При внезапном сужении и трубы коэффициент местного сопротивления зависит от отношения узкого сечения f2 к ее широкому сечению f1 и может быть принят в пределах от 0 (f2 /f1 =1) до 0,5 (f2 /f1 =0,01)
При наличии колен в трубах коэффициент местного сопротивления зависит от угла наклона α и шероховатости стенок колена
При наличии закруглений труб (отводов) коэффициент местного сопротивления определяют по формуле:
Для наиболее часто применяемого на практике закругления (R=4d) коэффициент ζ≈0,13.
При наличии дроссельного клапана коэффициент местного сопротивления зависит от угла открытия α клапана и может быть принят равным от 0,24 до 751.
При наличии проходного крана коэффициент местного сопротивления зависит от угла поворота (открытия) α пробки крана и может быть принят равным от 0,05 до 486.
При наличии вентиля и задвижки коэффициент местного сопротивления зависит от степени открытия и конструктивных особенностей вентиля или задвижки и может быть принят от 0,15 до 3.
10. Сущность процесса псевдоожиженного слоя зернистого материала («кипящего слоя»). Графическое изображение перепада давления в слое в зависимости от скорости. Скорость витания и скорость уноса
В химической промышленности широко распространены процессы взаимодействия газов и жидкостей с зернистыми твердыми материалами. В зависимости от скорости потока газа или жидкости возможны различные случаи. При большой скорости потока газа или жидкости частицы материала слоя увлекаются потоком и образуют взвесь. Это состояние наступает тогда, когда сопротивление движению отдельной частицы, взвешенной в газе или жидкости, становится равным весу частицы в данной газообразной или жидкой среде. Такое состояние слоя зернистого материала называют псевдоожиженным, а слой кипящим. Скорость частиц твердого материала, взвешенных в газовом или жидкостном потоке, называют скоростью витания ωвит .
Состояние псевдоожиженного слоя изображается «кривой псевдоожижения», выражающей зависимость перепада давления ΔР в слое от скорости ожижающего агента ω (жидкости, газа) в незаполненном сечении аппарата. На рисунке 2 показана кривая идеального псевдоожижения монодисперсного твердых частиц в аппарате постоянного поперечного сечения fс . Восходящая ветвь ОА (прямая при ламинарном течении и кривая при других режимах) соответствует движению ожижающего агента через неподвижный зернистый слой. Абсцисса точки А (ω=ω0 ') выражает скорость начала псевдоожижения. Горизонтальный участок АВ изображает псевдоожиженное состояние, характеризующееся равенством сил давления потока на слой твердых частиц и их веса; здесь сохраняется ΔР=соnst. Абсцисса точки В выражает скорость начала уноса ω0 ''. При скоростях ω˃ω0 '' твердые частицы выносятся потоком, вес слоя падает и, следовательно, уменьшается ΔР.
Рис. 2. Кривая идеального псевдоожижения
Основной гидродинамической характеристикой взвешенного слоя (при неизменном количестве материала в нем) является постоянство ΔРсл :
,
где Gсл – вес материала в слое, Н; S – площадь поперечного сечения, м2
Скорость потока, при которой одиночная частица переходит во взвешенное состояние, называется скоростью витания. Она приближенно может быть определена по формуле:
,
где
- критерий Архимеда, состоящий из величин которые не зависят от скорости и режима потока, и поэтому числовые значения его могут быть найдены, если только известны размеры частиц, их плотность, а также плотность газа или жидкости и их вязкость при заданных условиях процесса.
11. Описать порядок расчета сопротивления слоя зернистого материала
Перепад давления в слое зернистого материала можно, пользуясь общими положениями гидродинамики выразить уравнением:
,(А)
где- удельный вес газа или жидкости в кгс/м3 ;