Контрольная работа: Математический расчет объема выпуска продукции
Задача №11
G=5
N=25
Завод выпускает изделия трех моделей (1, 2 и 3). Для изготовления используются 2 вида ресурсов А и В, запасы которых составляют 400 и 600 единиц. Расход ресурсов на одно изделие каждой модели приведен в таблице:
Расход ресурса на одно изделие | |||
Изделие 1 | Изделие 2 | Изделие 3 | |
Ресурс А | G=5 | 3 | 5 |
Ресурс В | 4 | 2 | 7 |
Трудоемкость изготовления изделия 1 вдвое больше, чем изделия модели 2 и в трое больше, чем модели 3. Численность рабочих завода позволяет выпускать 150 изделий модели 1 (если не одновременно изделия моделей 2 и 3). Анализ условий сбыта показывает, что минимальный спрос на продукцию завода составляет 50, 50 и 30 изделий моделей 1, 2 и 3 соответственно. Удельные прибыли от реализации изделий 1, 2 и 3 составляют N=25 , 20 и 50$ соответственно.
Определить объемы выпуска изделий каждой модели, при которых прибыль будет максимальна.
Необходимо:
1) Составить математическую модель задачи целочисленного программирования.
2) Решить задачу симплекс-методом.
3) Произвести постоптимальный анализ.
4) Сформулировать двойственную задачу и от финального решения прямой задач перейти к решению двойственной задачи.
5) Найти целочисленное решение методом отсечения (достаточно пяти итераций).
1) Составим математическую модель задачи целочисленного программирования
Пусть х1 -выпущенное количество изделий модели 1
х2- выпущенное количество изделий модели 2
х3- выпущенное количество изделий модели 3
Хотим найти такой ассортимент выпускаемых товаров, при котором прибыль будет максимальнаПрибыль от продаж 1 единицы каждого изделия 25, 20 и 50$Записываем функцию цели:
Сырье которое используем в ходе производства ограничено запасами, построим ограничения по сырью, используя данные приведенные в таблице:
Численность рабочих позволяет выпускать только 150 единиц товара №1 если не производить в это же время товары 2 и 3.
Трудоемкость товара 1 вдвое больше чем товара 2 и втрое больше чем товара 3
По условию задачи сказано, что минимальный спрос на продукцию завода составляет 50, 50 и 30 изделий моделей 1, 2 и 3 соответственно:
Запишем все в математическую модель задачи:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--