Контрольная работа: Математичне моделювання економічних систем

Завдання 4. Транспортна задача

Для заданих транспортних задач скласти математичну модель і розв’язати їх методом потенціалів, використавши для визначення початкового плану метод мінімального елемента або північно-західного кута.

1. Запаси деякого однорідного продукту знаходяться на трьох пунктах постачання (базах) A1, A2, A3 і цей продукт потрiбно доставити в три пункти споживання (призначення) B1, B2, B3. Задача полягає в тому, щоб визначити, яку кiлькiсть продукту потрiбно перевезти з кожного пункту постачання (бази) до кожного пункту споживання (призначення) так, щоб забезпечити вивезення всього наявного продукту з пунктів постачання, задовільнити повністю потреби кожного пункту споживання і при цьому сумарна вартiсть перевезень була б мiнiмальною (зворотні перевезення виключаються). Вартість перевезеньс ij (у грн.) з бази А i до пункту призначення Bj вказана в таблиці, де також наведені дані про запаси ai (у тонанх) продукту і його потреби (у тонах) bj .


Пункти Пункти споживання Запаси
постачання B1 B2 B3
A1 3 5 7 270
A2 6 9 4 180
A3 11 8 10 300
Потреби 260 280 300

Для даної транспортної задачі не виконується умова балансу , тому введемо додатковий пункт постачання з запасами 840-750=90 і тарифами С4 s =0 (i=1,2,3). Тоді одержимо замкнену транспортну задачу, яка має розв’язок. Її математична модель має вигляд:

хi ,

j ³ 0, 1£i£4, 1£j£3.

Пункти Пункти споживання Запаси
постачання B1 B2 B3
A1 3 5 7 270
A2 6 9 4 180
A3 11 8 10 300
A4 0 0 0 90
Потреби 260 280 300

840

840


За методом північно-західного кута знайдемо опорний план

Пункти Пункти споживання Запаси
постачання B1 B2 B3
A1

3

260

5

10

7

270

A2

6

9

180

4

180

A3

11

8

90

10

210

300

A4

0

0

0

90

90

Потреби 260 280 300

840

840

За методом північно-західного кута опорний план має вигляд:

.

F=3*260+5*10+9*180+8*90+10*210+0*90=5270

Перевіримо чи буде він оптимальним.

Знаходимо потенціали для пунктів постачання

Для тих клітинок, де, розв’яжемо систему рівнянь

Знаходимо з системи:

.


Для тих клітинок, де, знайдемо числа

Оскільки , то план Х1 не є оптимальним. Будуємо цикл перерахунку

Пункти Пункти споживання Запаси
постачання B1 B2 B3
A1 3 5 7 0

270

260 10
A2 6 1 9 4 7

180

- 180 +
A3 11 -5 8 10

300

+ 90 - 210
A4 0 -4 0 -2 0

90

90
Потреби 260 280 300

840

840

В результаті перерахунку отримаємо

Пункти Пункти споживання Запаси
постачання B1 B2 B3
A1

3

260

5

10

7

270

A2

6

9

4

180

180

A3

11

8

270

10

30

300

A4

0

0

0

90

90

Потреби 260 280 300

840

840

Наступний опорний план

F=3*260+5*10+9*180+8*90+10*210+0*90=4010

Для тих клітинок, де, розв’яжемо систему рівнянь

Знаходимо з системи:


.

Для тих клітинок, де, знайдемо числа

Отже план є оптимальним F =4010

К-во Просмотров: 365
Бесплатно скачать Контрольная работа: Математичне моделювання економічних систем