Контрольная работа: Метод Монте-Карло

(6)

где п — число испытаний; s «исправленное» среднее квадратическое отклонение, t находят по таблице значений ty == t { , n }.

3. Случайная величина Х распределена по закону, отличному от нормального. В этом случае при достаточно большом числе испытаний (n > 30) с надежностью, приближенно равной , верхняя граница ошибки может быть вычислена по формуле (5), если среднее квадратическое отклонение случайной величины Х известно; если же -неизвестно, то можно подставить в формулу (5) его оценку s «исправленное» среднее квадратическое отклонение либо воспользоваться формулой (6). Заметим, что чем больше п, тем меньше различие между результатами, которые дают обе формулы. Это объясняется тем, что при п —> распределение Стьюдента стремится к нормальному. В частности, при п=--100, =0,95 верхняя граница ошибки равна 0,098 по формуле (5) и 0,099 по формуле (6). Как видим, результаты различаются незначительно.

Замечание. Для того чтобы найти наименьшее число испытаний, которые обеспечат наперед заданную верхнюю границу ошибки , надо выразить п из формул (5) и (6):

2. Практическая часть

Задача 2

Исходя из статистических данных о деятельности торгового предприятия, с помощью регрессионной зависимости вида

Y = a *Х + b

установить связь между потерями на рекламу (X) и объемом реализации (Y).

2.1. Вычислить параметры зависимости a и b методом наименьших квадратов.

2.2. Оценить соответствие построенной зависимости статистическим данным.

Вариант 7

x

109

107

108

111

106

105

104

y

234

235

236

237

238

239

240

К-во Просмотров: 375
Бесплатно скачать Контрольная работа: Метод Монте-Карло