Контрольная работа: Метод Монте-Карло
(6)
где п — число испытаний; s — «исправленное» среднее квадратическое отклонение, t находят по таблице значений ty == t { , n }.
3. Случайная величина Х распределена по закону, отличному от нормального. В этом случае при достаточно большом числе испытаний (n > 30) с надежностью, приближенно равной , верхняя граница ошибки может быть вычислена по формуле (5), если среднее квадратическое отклонение случайной величины Х известно; если же -неизвестно, то можно подставить в формулу (5) его оценку s — «исправленное» среднее квадратическое отклонение либо воспользоваться формулой (6). Заметим, что чем больше п, тем меньше различие между результатами, которые дают обе формулы. Это объясняется тем, что при п —> распределение Стьюдента стремится к нормальному. В частности, при п=--100, =0,95 верхняя граница ошибки равна 0,098 по формуле (5) и 0,099 по формуле (6). Как видим, результаты различаются незначительно.
Замечание. Для того чтобы найти наименьшее число испытаний, которые обеспечат наперед заданную верхнюю границу ошибки , надо выразить п из формул (5) и (6):
2. Практическая часть
Задача 2
Исходя из статистических данных о деятельности торгового предприятия, с помощью регрессионной зависимости вида
Y = a *Х + b
установить связь между потерями на рекламу (X) и объемом реализации (Y).
2.1. Вычислить параметры зависимости a и b методом наименьших квадратов.
2.2. Оценить соответствие построенной зависимости статистическим данным.
Вариант 7 |
x |
109 |
107 |
108 |
111 |
106 |
105 |
104 |
y |
234 |
235 |
236 |
237 |
238 |
239 |
240 |