Контрольная работа: Метод Монте-Карло

1. Находим транспонированную матрицу в блоке E 13: K 15 по отношению к матрице в блоке A 2: C 8 , используя в категории "Ссылки и массивы" встроенную функцию ТРАНСП (A 2: C 8 ).

2. Находим произведение матриц в блоке A 18: C 20 , используя встроенную математическую функцию МУМНОЖ (блок данных первой матрицы A 18: C 20 ; блок данных второй матрицы A 2: C 8 ).

3. Обратную матрицу находим в блоке D 18: F 20 , используя встроенную математическую функцию =МОБР( A 18: C 20) .

4. Произведение матриц находим в блоке H 18: H 20 , встроенную математическую функцию =МУМНОЖ(E13:K15;E2:E8).

5. Оценки вектора находим в блоке J 39: J 41 , встроенную математическую функцию =МУМНОЖ(D18:F20;H18:H20).

[XT ][X]-1 [XT ]Y

0,32512

0,00040

-0,00005

a= 0,00040, b= -0,00005, c= 0,32512.

Уравнение регрессии:

Y = 0,00040X1 + -0,00005X2 + 0,32512

3.5. Проверим адекватность принятой модели экспериментальным данным с помощью критерия Фишера. Расчетные значения Yрасч считаем в столбце F по формуле Yрасч =0,00040Х 1 +-0,00005Х2 +0,32512..

Рассчитываем F-статистику Фишера с m и (n- m- 1) степенями свободы:

где m — количество факторов, которые вошли в модель; m=2

n – общее количество наблюдений; n=7

В ячейках F 2: F 10 находятся расчетные значения показателя, а в ячейках G 2: G 10 квадраты их отклонений от экспериментальных значений.

В ячейках H 2: H 10 квадраты отклонений от среднего значения.

Расчетное значение Fрасч = 1,19895497

По F- таблице Фишера находим критическое значение Fкр с m и (n-m-1) степенями свободы: Fкрит (0,95;2;4)= 6,94

Расчетное значение критерия 1,19895497 меньше критического, значит с надежностью можно считать, что принятая математическая модель неадекватна по экспериментальным данным .

Таблица с расчетными данными:

К-во Просмотров: 372
Бесплатно скачать Контрольная работа: Метод Монте-Карло