Контрольная работа: Многомерные и многосвязные системы
,
.
Рис. 8. Структура синтезированной системы
2. Построение наблюдателя полного порядка
Система
называется асимптотическим наблюдателем полного порядка, если для любого начального состояния х(0) и всех оценка с ростом времени асимптотически приближается к вектору состояния .
Найдём структуру асимптотического наблюдателя, для чего определим ошибку восстановления и найдём модель её изменения:
.
Затем потребуем, чтобы при всех и .
Это равенство возможно при:
,
.
Таким образом, структура асимптотического наблюдателя полного порядка определяется моделью вида:
.
На рис. 9 изображена структура системы и её наблюдателя.
Рис. 9. Структура системы с наблюдателем
Задача синтеза наблюдателя системы состоит в том, чтобы найти матрицу . Это можно сделать, исходя из условия асимптотической сходимости оценки к вектору состояния при любых начальных состояниях наблюдателя и системы.
Пусть ошибка восстановления , тогда
.
Ошибка восстановления описывается линейным однородным дифференциальным уравнением с матрицей и ненулевыми начальными условиями, а поэтому асимптотическая сходимость ошибки к нулю возможна тогда и только тогда, когда собственные числа матрицы , которые называют полюсами наблюдателя, располагаются в левой полуплоскости.
Пусть матрица
,
тогда матрица
.
Полюса наблюдателя определяются уравнением:
.