Контрольная работа: Побудова математичної моделі задачі лінійного програмування

за умов

Розв’язання.

В декартовій системі координат х1 Ох2 будуємо прямі, які визначаються нерівностями системи обмежень. Це прямі ; ; . Кожна пряма ділить площину х1 Ох2 на дві половини, в одній з яких виконується відповідна нерівність системи обмежень, а в іншій не виконується. Півплощини, в яких виконуються нерівності системи обмежень позначені штриховою біля прямих. Переріз цих півплощин являє собою область припустимих планів задачі. Це – чотирикутник ОАВС.

Цільова функція визначає сімейство паралельних прямих ліній з різними значеннями параметра z . При z=0 маємо пряму , що проходить через початок координат. Збільшенню значення параметра z відповідає переміщення прямої цільової функції у напрямку, позначеному вектором n+ . Безпосередньо з креслення видно, що максимальному значенню параметра z (максимуму цільової функції при заданих обмеженнях) відповідає точка припустимої області, яка є вершиною В чотирикутника ОАВС (це остання точка припустимої області, яка належить прямій цільової функції z при її переміщенні у напрямку збільшення параметра z ). Координати (х1 , х2 ) цієї точки є шуканим оптимальним планом задачі.

З креслення визначаємо: .

Отже, оптимальним планом даної задачі є , цільова функція при цьому набуває максимального значення .

Завдання 3

Розв’язати систему лінійних рівнянь методом повного виключення

змінних з використанням розрахункових таблиць.

Будуємо розрахункову таблицю і обираємо за ведучий елемент а21 =1 (у таблиці виділений):

х1

х2

х3

B

3

-2

2

-3

1

4

-1

0

4

-1

К-во Просмотров: 352
Бесплатно скачать Контрольная работа: Побудова математичної моделі задачі лінійного програмування