Контрольная работа: Прогноз годовой прибыли

ВАРИАНТ 5

Изучается зависимость средней ожидаемой продолжительности жизни от нескольких факторов по данным за 1995 г., представленным в табл. 5.

Таблица 5

Страна Y X 1 X 2 X 3 X 4
Мозамбик 47 3,0 2,6 2,4 113
Бурунди 49 2,3 2,6 2,7 98
……………………………………………………………………………………..
Швейцария 78 95,9 1,0 0,8 6

Принятые в таблице обозначения:

· Y — средняя ожидаемая продолжительность жизни при рождении, лет;

· X 1 — ВВП в паритетах покупательной способности;

· X 2 — цепныетемпы прироста населения, %;

· X 3 — цепныетемпы прироста рабочей силы, %;

· Х 4 — коэффициент младенческой смертности, %.

Требуется:

1. Составить матрицу парных коэффициентов корреляции между всеми исследуемыми переменными и выявить коллинеарные факторы.

2. Построить уравнение регрессии, не содержащее коллинеарных факторов. Проверить статистическую значимость уравнения и его коэффициентов.

3. Построить уравнение регрессии, содержащее только статистически значимые и информативные факторы. Проверить статистическую значимость уравнения и его коэффициентов.

Пункты 4 — 6 относятся к уравнению регрессии, построенному при выполнении пункта 3.

4. Оценить качество и точность уравнения регрессии.

5. Дать экономическую интерпретацию коэффициентов уравнения регрессии и сравнительную оценку силы влияния факторов на результативную переменную Y .

6. Рассчитать прогнозное значение результативной переменной Y , если прогнозные значения факторов составят 75 % от своих максимальных значений. Построить доверительный интервал прогноза фактического значения Y c надежностью 80 %.

Решение. Для решения задачи используется табличный процессор EXCEL.

1.С помощью надстройки «Анализ данныхКорреляция » строим матрицу парных коэффициентов корреляции между всеми исследуемыми переменными (меню «Сервис » ® «Анализ данных …» ® «Корреляция »). На рис. 1 изображена панель корреляционного анализа с заполненными полями[1] . Результаты корреляционного анализа приведены в прил. 2 и перенесены в табл. 1 .

р ис. 1. Панель корреляционного анализа


Таблица 1

Матрица парных коэффициентов корреляции

Y X1 X2 X3 X4
Y 1
X1 0,780235 1
X2 -0,72516 -0,62251 1
X3 -0,53397 -0,65771 0,874008 1
X4 -0,96876 -0,74333 0,736073 0,55373 1

Анализ межфакторных коэффициентов корреляции показывает, что значение 0,8 превышает по абсолютной величине коэффициент корреляции между парой факторов Х 2Х 3 (выделен жирным шрифтом). Факторы Х 2Х 3 таким образом, признаются коллинеарными.

2. Как было показано в пункте 1, факторы Х 2Х 3 являются коллинеарными, а это означает, что они фактически дублируют друг друга, и их одновременное включение в модель приведет к неправильной интерпретации соответствующих коэффициентов регрессии. Видно, что фактор Х 2 имеет больший по модулю коэффициент корреляции с результатом Y , чем фактор Х 3 : ry , x 2 =0,72516; ry , x 3 =0,53397; |ry , x 2 |>|ry , x 3 | (см. табл. 1 ). Это свидетельствует о более сильном влиянии фактора Х 2 на изменение Y . Фактор Х 3 , таким образом, исключается из рассмотрения.

Для построения уравнения регрессии значения используемых переменных (Y ,X 1 , X 2 , X 4 ) скопируем на чистый рабочий лист (прил. 3) . Уравнение регрессии строим с помощью надстройки «Анализ данных… Регрессия » (меню «Сервис» ® «Анализ данных… » ® «Регрессия »). Панель регрессионного анализа с заполненными полями изображена на рис. 2 .

Результаты регрессионного анализа приведены в прил. 4 и перенесены в табл. 2 . Уравнение регрессии имеет вид (см. «Коэффициенты» втабл. 2 ):

ŷ = 75.44 + 0.0447 ·x1 - 0.0453 ·x2 - 0.24 ·x4


Уравнение регрессии признается статистически значимым, так как вероятность его случайного формирования в том виде, в котором оно получено, составляет 1.04571·10-45 (см. «Значимость F» втабл. 2 ), что существенно ниже принятого уровня значимости a=0,05.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 226
Бесплатно скачать Контрольная работа: Прогноз годовой прибыли