Контрольная работа: Прогноз годовой прибыли
ВАРИАНТ 5
Изучается зависимость средней ожидаемой продолжительности жизни от нескольких факторов по данным за 1995 г., представленным в табл. 5.
Таблица 5
Страна | Y | X 1 | X 2 | X 3 | X 4 |
Мозамбик | 47 | 3,0 | 2,6 | 2,4 | 113 |
Бурунди | 49 | 2,3 | 2,6 | 2,7 | 98 |
…………………………………………………………………………………….. | |||||
Швейцария | 78 | 95,9 | 1,0 | 0,8 | 6 |
Принятые в таблице обозначения:
· Y — средняя ожидаемая продолжительность жизни при рождении, лет;
· X 1 — ВВП в паритетах покупательной способности;
· X 2 — цепныетемпы прироста населения, %;
· X 3 — цепныетемпы прироста рабочей силы, %;
· Х 4 — коэффициент младенческой смертности, %.
Требуется:
1. Составить матрицу парных коэффициентов корреляции между всеми исследуемыми переменными и выявить коллинеарные факторы.
2. Построить уравнение регрессии, не содержащее коллинеарных факторов. Проверить статистическую значимость уравнения и его коэффициентов.
3. Построить уравнение регрессии, содержащее только статистически значимые и информативные факторы. Проверить статистическую значимость уравнения и его коэффициентов.
Пункты 4 — 6 относятся к уравнению регрессии, построенному при выполнении пункта 3.
4. Оценить качество и точность уравнения регрессии.
5. Дать экономическую интерпретацию коэффициентов уравнения регрессии и сравнительную оценку силы влияния факторов на результативную переменную Y .
6. Рассчитать прогнозное значение результативной переменной Y , если прогнозные значения факторов составят 75 % от своих максимальных значений. Построить доверительный интервал прогноза фактического значения Y c надежностью 80 %.
Решение. Для решения задачи используется табличный процессор EXCEL.
1.С помощью надстройки «Анализ данных … Корреляция » строим матрицу парных коэффициентов корреляции между всеми исследуемыми переменными (меню «Сервис » ® «Анализ данных …» ® «Корреляция »). На рис. 1 изображена панель корреляционного анализа с заполненными полями[1] . Результаты корреляционного анализа приведены в прил. 2 и перенесены в табл. 1 .
р ис. 1. Панель корреляционного анализа
Таблица 1
Матрица парных коэффициентов корреляции
Y | X1 | X2 | X3 | X4 | |
Y | 1 | ||||
X1 | 0,780235 | 1 | |||
X2 | -0,72516 | -0,62251 | 1 | ||
X3 | -0,53397 | -0,65771 | 0,874008 | 1 | |
X4 | -0,96876 | -0,74333 | 0,736073 | 0,55373 | 1 |
Анализ межфакторных коэффициентов корреляции показывает, что значение 0,8 превышает по абсолютной величине коэффициент корреляции между парой факторов Х 2 –Х 3 (выделен жирным шрифтом). Факторы Х 2 –Х 3 таким образом, признаются коллинеарными.
2. Как было показано в пункте 1, факторы Х 2 –Х 3 являются коллинеарными, а это означает, что они фактически дублируют друг друга, и их одновременное включение в модель приведет к неправильной интерпретации соответствующих коэффициентов регрессии. Видно, что фактор Х 2 имеет больший по модулю коэффициент корреляции с результатом Y , чем фактор Х 3 : ry , x 2 =0,72516; ry , x 3 =0,53397; |ry , x 2 |>|ry , x 3 | (см. табл. 1 ). Это свидетельствует о более сильном влиянии фактора Х 2 на изменение Y . Фактор Х 3 , таким образом, исключается из рассмотрения.
Для построения уравнения регрессии значения используемых переменных (Y ,X 1 , X 2 , X 4 ) скопируем на чистый рабочий лист (прил. 3) . Уравнение регрессии строим с помощью надстройки «Анализ данных… Регрессия » (меню «Сервис» ® «Анализ данных… » ® «Регрессия »). Панель регрессионного анализа с заполненными полями изображена на рис. 2 .
Результаты регрессионного анализа приведены в прил. 4 и перенесены в табл. 2 . Уравнение регрессии имеет вид (см. «Коэффициенты» втабл. 2 ):
ŷ = 75.44 + 0.0447 ·x1 - 0.0453 ·x2 - 0.24 ·x4
Уравнение регрессии признается статистически значимым, так как вероятность его случайного формирования в том виде, в котором оно получено, составляет 1.04571·10-45 (см. «Значимость F» втабл. 2 ), что существенно ниже принятого уровня значимости a=0,05.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--