Контрольная работа: Прогноз годовой прибыли
показывает, что предсказанные уравнением регрессии значения средней ожидаемой продолжительности жизни при рожденииY отличаются от фактических значений в среднем на 2,252208 лет.
Средняя относительная ошибка аппроксимации определяется по приближенной формуле:
Sрег
Eотн ≈0,8 · — ·100%=0.8 · 2.252208/66.9 · 100%≈2.7
− y
где тыс. руб. — среднее значение продолжительности жизни (определено с помощью встроенной функции «СРЗНАЧ »; прил. 1 ).
Е отн показывает, что предсказанные уравнением регрессии значения годовой прибыли Y отличаются от фактических значений в среднем на 2,7 %. Модель имеет высокую точность (при — точность модели высокая, при — хорошая, при — удовлетворительная, при — неудовлетворительная).
5.Для экономической интерпретации коэффициентов уравнения регрессии сведем в таблицу средние значения и стандартные отклонения переменных в исходных данных (табл. 4 ) . Средние значения были определены с помощью встроенной функции «СРЗНАЧ », стандартные отклонения — с помощью встроенной функции «СТАНДОТКЛОН » (см. прил. 1 ).
Таблица 4
Средние значения и стандартные отклонения используемых переменных
Переменная | Y | X 1 | X 4 |
Среднее | 66,9 | 29,75 | 40,9 |
Стандартное отклонение | 9,6 | 28,76 | 34,8 |
1) Фактор X 1 ( ВВП в паритетах покупательной способности)
Значение коэффициента b 1 =0,044918 показывает, что рост ВВП в паритетах покупательной способности на 1 %. приводит к повышению средней ожидаемой продолжительности жизни при рождении на 0,044918 лет.
Средний коэффициент эластичности фактораX 1 имеет значение
x1 29.75
Е1 = b1 · ― = 0.044918 · ____ ≈ 0.01997
y66.9
Он показывает, что при увеличении ВВП в паритетах покупательской способности на 1 % годовая прибыль увеличивается в среднем на 0,01997 %.
2) Фактор X 4 ( коэффициент младенческой смертности)
Значение коэффициента b 4 =(-0,24031) показывает, что рост коэффициента младенческой смертности на 1 %. приводит к уменьшению средней ожидаемой продолжительности жизни при рождении в среднем на -0,24031 лет.
Средний коэффициент эластичности фактораX 4 имеет значение
x4 40.9
Е4 = b4 · ― = - 0.24031 · ____ ≈ 0.1469
y66.9
Он показывает, что при увеличении коэффициента младенческой смертности на 1 % средняя ожидаемая продолжительность жизни увеличивается в среднем на 0,1469 %.
Средний коэффициент эластичности для фиктивных переменных лишен смысла, поэтому не рассчитывается.
Сравним между собой силу влияния факторов, включенных в регрессионную модель, на годовую прибыль, для чего определим их бета–коэффициенты:
Sx 1 28.76
B1 = b1 · ― = 0.044918 ·____ ≈ 0.1346;
Sy 9.6