Контрольная работа: Прогноз среднего значения цены
а0 = 9,0625- (-1,844) * 5.25 = 18,74
Таким образом,
Аналогично находятся оценки коэффициентов второй регрессионной модели y = β0 + β1 х1 + δ. При этом используется правая часть таблицы
= 1611/16=100,6875
= 10137.97
= 153271,1
= 167677
β1 =
β 0 = 9,0625- 0,0099 * 100.6875= 2.0355
Окончательно получаем:
Подставляем соответствующие значения в формулу:
ryx =
ryx 1 = = 0,915
ryx 2 = = 0.8
В нашей задаче t0.95;14 = 1,761
Для ryx 1 получаем
= = 0,955 <1.761
Условие не выполняется, следовательно, коэффициент парной корреляции не значим, гипотеза отвергается, между переменными отсутствует линейная связь
= = 4.98>1.761
Условие выполняется, следовательно, коэффициент парной корреляции значимый, гипотеза подтверждается, между переменными существует сильная линейная связь
Коэффициент парной корреляции ryx связан с коэффициентом а1 уравнения регрессии
следующим образом
ryx = a1 Sx /Sy
где Sx , Sy – выборочные среднеквадратичные отклонения случайных переменных х и y соответственно, рассчитывающиеся по формулам:
Sx1 = √ Sx1 2
Sx1 2 = 1/n ∑(xi - )2
Sy = √ Sy 2