Контрольная работа: Расчет балки
Из различных типов конических колес с непрямыми зубьями на практике получили распространение колеса с косыми или тангенциальными зубьями и колеса с круговыми зубьями. Преимущественное применение получили колеса с круговыми зубьями. Они менее чувствительны к нарушению точности взаимного расположения колес, их изготовление проще.
Конические передачи применяются при пересекающихся валах. Конические передачи дорогие. Выгодны не прямозубые, а косозубые колеса, так как они позволяют уменьшить габариты и массу.
Выполним геометрический расчет передачи редуктора.
Модуль зацепления:
m = (0,01–0,02) α = 1,4 – 2,8 мм, принимаем m = 2 мм.
Ширина колеса:
b2 = ψ · α = 0,5 · 140 = 70 мм
b1 = b2 + 5 = 70 + 5 = 75 мм – ширина шестерни.
Минимальный угол наклона зубьев:
βmin = arcsin = arcsin = 5,7°
При β = βmin сумма чисел зубьев zc = z1 + z2 = (2α/m) cos βmin = (2 · 140/2) cos 5,7°= 139,3
Округляем до целого: zc = 139
Угол наклона зубьев:
β = arccos = arccos = 6,85°,
при нем zc = (2 · 140/2) cos 6,85° = 139
Число зубьев шестерни:
z1 = zc / (Uц + 1) = 139 / (2,77 + 1) ≈ 37
z2 = 139 – 37 = 102 – колеса.
Передаточное число:
Uф = 102 / 37 = 2,76, отклонение ΔU = 0,02U – допустимо.
Диаметры делительных окружностей:
d1 = m z1 /cos β = 2 · 37 / cos 6,85° = 74,5 мм – шестерни;
d2 = m z2 /cos β = 2 · 102 / cos 6,85° = 205,5 мм – колеса.
Торцевой (окружной) модуль:
mt = m /cos β = 2 / cos 6,85° = 2,014
Диаметры вершин зубьев:
dа1 = d1 + 2m = 74,5 + 2 · 2 = 78,5 мм;
dа2 = d2 + 2m = 205,5 + 2 · 2 = 209,5 мм.
Диаметры впадин зубьев: