Контрольная работа: Расчет коэффициента эластичности и показателей корреляции и детерминации
Модель включает четыре эндогенные переменные (Rt , Yt , It , Сt ) и две предопределенные переменные ( и ).
Проверим необходимое условие идентификации для каждого из уравнений модели.
Первое уравнение:
Rt = a1 + b12 Yt + b14 Mt + e1 .
Это уравнение содержит две эндогенные переменные и и одну предопределенную переменную . Таким образом,
,
т.е. выполняется условие . Уравнение сверхидентифицируемо.
Второе уравнение:
Yt = a2 + b21 Rt + b23 It + b25 Gt + e2 .
Оно включает три эндогенные переменные Yt , It и Rt и одну предопределенную переменную Gt . Выполняется условие
.
Уравнение идентифицируемо.
Третье уравнение:
It = a3 + b31 Rt + e3 .
Оно включает две эндогенные переменные It и Rt . Выполняется условие
.
Уравнение идентифицируемо.
Четвертое уравнение:
Сt = Yt + It + Gt .
Оно представляет собой тождество, параметры которого известны. Необходимости в идентификации нет.
Проверим для каждого уравнения достаточное условие идентификации. Для этого составим матрицу коэффициентов при переменных модели.
Rt | ||||||
I уравнение | 0 | 0 | –1 | b12 | b14 | 0 |
II уравнение | 0 | b23 | –1 | 0 | b25 | |
III уравнение | 0 | –1 | b31 | 0 | 0 | 0 |
Тождество | –1 | 1 | 0 | 1 | 0 | 1 |
В соответствии с достаточным условием идентификации ранг матрицы коэффициентов при переменных, не входящих в исследуемое уравнение, должен быть равен числу эндогенных переменных модели без одного.
Первое уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
Rt | ||||
II уравнение | b23 | –1 | b25 | |
III уравнение | –1 | b31 | 0 | 0 |
Тождество | 1 | 0 | 1 | 1 |
Ранг данной матрицы равен трем, так как определитель квадратной подматрицы не равен нулю:
.
Достаточное условие идентификации для данного уравнения выполняется.
Второе уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид
Rt | ||||||
I уравнение | 0 | 0 | –1 | b12 | b14 | 0 |
III уравнение | 0 | -1 | b31 | 0 | 0 | 0 |
Тождество | –1 | 1 | 0 | 1 | 0 | 1 |
Ранг данной матрицы равен трем, так как определитель квадратной подматрицы не равен нулю:
.