Контрольная работа: Расчет коэффициента эластичности и показателей корреляции и детерминации

Третье уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид

Rt
I уравнение 0 0 –1 b12 b14 0
II уравнение 0 b23 –1 0 b25
Тождество -1 1 0 1 0 1

Ранг данной матрицы равен трем, так как определитель квадратной подматрицы не равен нулю:

Достаточное условие идентификации для данного уравнения выполняется.

Таким образом, все уравнения модели сверхидентифицируемы. Приведенная форма модели в общем виде будет выглядеть следующим образом:


Rt = a1 + b11 Yt + b13 Mt + b15 Gt + b16 Gt + u1

Yt = a2 + b21 Rt + b23 It + b25 Gt + b26 Gt + u 2

It = a3 + b31 Rt + b33 It + b35 Gt + b36 Gt + u 3

Сt = a4 + b41 Rt + b43 It + b45 Gt + b46 Gt + u 4

Задача 26

Имеются данные об урожайности культур в хозяйствах области:

Варианты Показатели Год
1 2 3 4 5 6 7 8
4 Урожайность картофеля, ц/га 63 64 69 81 84 96 106 109

Задание:

1. Обоснуйте выбор типа уравнения тренда.

2. Рассчитайте параметры уравнения тренда.

3.Дайте прогноз урожайности культур на следующий год.

Решение:

1. Обоснуйте выбор типа уравнения тренда.

Построение аналитической функции для моделирования тенденции (тренда) временного ряда называют аналитическим выравнивание временного ряда . Для этого применяют следующие функции:

- линейная

- гипербола

- экспонента

- степенная функция

- парабола второго и более высоких порядков

Параметры трендов определяются обычными МНК, в качестве независимой переменной выступает время t=1,2,…,n, а в качестве зависимой переменной – фактические уровни временного ряда yt . Критерием отбора наилучшей формы тренда является наибольшее значение скорректированного коэффициента детерминации .


К-во Просмотров: 306
Бесплатно скачать Контрольная работа: Расчет коэффициента эластичности и показателей корреляции и детерминации