Контрольная работа: Расчет линейной ARC цепей
-U11pC1+U22(g3+pC1+pC2)=0
U22(g4+g5)-U44g5=0
В матричной форме система узловых уравнений примет вид
Из этой системы линейных уравнений по правилу Крамера могут быть определены операторное изображение узлового напряжения выхода четырехполюсника:
=,
Операторная функция передачи рассматриваемого активного четырехполюсника будет равна
в виде дробно-рациональной функции:
где | =С1g1(g4+g5) | =g3g5(g1+g2) |
=C1C2g5 | ||
=C1g1g5-C1g2g4+C2g1g5+C1g3g5+C2g2g5 |
2. Параметрический синтез фильтра
Сравним между собой две употребляемые формы записи передаточной функции ПФ второго порядка (см. табл. 1, формы 1, 2),
можно видеть, что
=, =b1/b2,
в результате получаем =; ==; =.
Таким образом, для определения параметров (параметрического синтеза) семи пассивных элементов (, , –) заданной цепи, удовлетворяющей заданным электрическим свойствам, имеем три уравнения. Недостающие уравнения получим, наложив следующие дополнительные условия. Исходя из сокращения номенклатуры номиналов элементов и в целях обеспечения относительно большого входного сопротивления каскадов положим ===10нФ, ===1000 Ом.
Воспользуемся полученными в пункте 1 выражениями для коэффициентов , дробно-рационального представления передаточной функции через параметры элементов схемы , , –. В результате подстановки получим
Отсюда находим
R5=
R3=114 ОМ
Параметры всех элементов фильтра определены. Их конкретные значения выбраны в соответствии с рядами номинальных значений сопротивлений резисторов и емкостей конденсаторов.