Контрольная работа: Расчет вероятностей событий
1 0 Коэффициент корреляции удовлетворяет неравенству .
2 0 В зависимости от близости r к единице различают связь слабую, умеренную, заметную, достаточно тесную, тесную и весьма тесную
Оценка тесноты линейной связи(шкала Чаддока)
Значение ½r ½ | 0–0,1 | 0,1–0,3 | 0,3–0,5 | 0,5–0,7 | 0,7–0,9 | 0,9–0,99 | 1 |
Теснота линейной связи |
Нет связи | Слабая | Умеренная | Заметная | Высокая | Очень высокая | Функциональная |
Значение R | Связь | Интерпретация связи |
R = 0 | Отсутствует | Отсутствует линейная связь между х и у |
0<R < 1 | Прямая | С увеличением х величина у в среднем увеличивается и наоборот |
-1<R<0 | Обратная | С увеличением х величина у в среднем уменьшается и наоборот |
R =+1 R = -1 | Функциональная | Каждому значению х соответствует одно строго определенное значение величины у и наоборот |
Ц/га | Число дождливых дней | Промежуточные вычисления | |||
№ | Y | X | Y*X | Y2 | X2 |
1 | 10 | 14 | 140 | 100 | 196 |
2 | 15 | 20 | 300 | 225 | 400 |
3 | 6 | 6 | 36 | 36 | 36 |
4 | 20 | 20 | 400 | 400 | 400 |
5 | 9 | 10 | 90 | 81 | 100 |
S | 60 | 70 | 966 | 842 | 1132 |
Средние | 12 | 14 | 193,2 | 168,4 | 226,4 |
Sx 2 | 30,4 | ||||
Sy2 | 24,4 | ||||
Sx | 5,51 | ||||
Sy | 4,94 | ||||
r | 0,925 |
Таким образом, коэффициент корреляции r=0,925, следовательно, можно сделать вывод, что между двумя факторами присутствует связь прямая и очень тесная.
Ответ : данные величины коррелируют.
Задание №12
По данным таблицы сделайте прогноз значения X, если Y = 3.
X | 4 | 2 | 3 | 7 | 5 | 6 | 3 |
Y | 2 | 7 | 4 | 6 | 5 | 2 | 1 |
Решение:
1. Определим и оценим тесноту корреляционной зависимости между величинами Y и X с помощью коэффициента корреляции .
Промежуточные вычисления | Уравнение регрессии | |||||
№ | Y | X | Y*X | Y2 | X2 | |
1 | 2 | 4 | 8 | 4 | 16 | 3,853 |
2 | 7 | 2 | 14 | 49 | 4 | 3,824 |
3 | 4 | 3 | 12 | 16 | 9 | 3,838 |
4 | 6 | 7 | 42 | 36 | 49 | 3,897 |
5 | 5 | 5 | 25 | 25 | 25 | 3,868 |
6 | 2 | 6 | 12 | 4 | 36 | 3,882 |
7 | 1 | 3 | 3 | 1 | 9 | 3,838 |
S | 27 | 30 | 116 | 135 | 148 | 3,84 |
Средние | 3,86 | 4,29 | 16,57 | 19,29 | 21,14 | |
Sx | 1,67 | a | 3,794 | |||
Sy | 2,10 | b | 0,015 | |||
r | 0,012 |
Коэффициент корреляции r=0,012, следовательно можно сделать вывод, что между двумя факторами связь прямая, но очень слабая (почти отсутствует).
Уравнение регрессии выбирают по возможности простым, и оно, как правило, лишь приближенно описывает зависимость между значениями x одного признака и соответствующими средними значениями другого признака .
Наиболее простой и употребляемый вид зависимости – линейная зависимость. Она определяется уравнением линейной регрессии.
В рассматриваемом примере предположим, что эмпирическая линия регрессии приближается к прямой, и, следовательно, теоретическая линия регрессии может быть представлена уравнением вида: и изображается на графике в виде прямой регрессии. Уравнение регрессии называется выборочным, поскольку его параметры a и b находятся по результатам выборки (хi , уi ), i =1,2,… n , причем наилучшим образом в смысле метода наименьших квадратов. Сущность метода заключается в том, чтобы была наименьшей сумма квадратов отклонений наблюдаемых значений уi от соответствующих значений , вычисленных по уравнению регрессии, то есть
Для нахождения параметров а и b уравнения регрессии используем метод наименьших квадратов. Для этого составим и решим систему линейных уравнений:
→
Решив систему уравнений, получим следующие значения параметров
a=3,794.
b=0,015.
Уравнение линейной регрессии .
Прогноз значения X, если Y = 3 при линейной зависимости
Список литературы
1. Адрухаев Х.М. Сборник задач по теории вероятностей./ Под ред. Проф. А.С. Солодовникова. – М.: Высшая школа, 2005.
2. Горелова Г.В. Теория вероятностей и математическая статистика в примерах и задачах с применением MSExcel. /Под ред. Г.В. Гореловой, И.А. Кацко. – Ростов н/Д: Феникс, 2006.
3. Информатика и математика для юристов. /Под ред. Проф. Х.А. Адриашина, проф. С.Я. Казанцева. – М.: Юнити-Дана, Закон и право, 2003
4. Ковбаса С.И., Ивановский В.Б. Теория вероятностей и математическая статистика: Учебное пособие для экономистов. – СПб.: Альфа, 2001.