Контрольная работа: Реконструкция значений утраченных точек изображений по энтропии коэффициентов дискретного косинусного преобразования

Как видно из рис. 4, графики энтропии для реальных изображений являются подобными, но не идентичными друг другу. Для точной оценки их формы нужно знать параметры и для заданного изображения, определение которых является достаточно сложной задачей, особенно для изображений, искаженных импульсным шумом.

На рис. 5 приведены графики энтропии коэффициентов ДКП для одного и того же изображения, но при разных шагах квантования.


Рис. 5. Энтропия коэффициентов ДКП изображения для разных ШК

На примере графиков, приведенных на рис. 4 и 5, показано, что зависимость энтропии от значения коэффициента ДКП является разной как для различных изображений, так и для одного и того же изображения, но для разных шагов квантования. В то же время форма этих зависимостей и их параметры отличаются не очень существенно и могут быть для простоты вычислений приближенно аппроксимированы, например, функцией, приведенной на рис. 6.

Рис. 6. График функции

Что же происходит с законом распределения и энтропией коэффициентов ДКП при искажении изображения, например, импульсным шумом? Гистограмма значений коэффициентов ДКП существенно изменяется (рис. 7 в сравнении с рис. 2), а суммарная энтропия коэффициентов ДКП резко возрастает (см. рис. 8).

Рис. 7. Гистограмма значений коэффициентов ДКП тестового изображения Barbara для ШК=1, если один пиксель каждого блока изображения искажен шумом типа «перец» (значение 0) [1]

Рис. 8. Энтропия коэффициентов ДКП тестового изображения Barbara при ШК=1 для импульсного шума с вероятностями 0, 3 и 10 %

Собственно, так как ДКП минимизирует энтропию в блоке изображения, то внесение любых случайных искажений будет приводить к ее повышению, а задача нахождения истинных (неискаженных) значений утерянных пикселей сводится к такому изменению значения утраченного пикселя (или группы пикселей), которое приведет к минимизации суммарной энтропии коэффициентов ДКП блока.

Основная идея предлагаемого подхода – за счет варьирования значения заданного пикселя попытаться минимизировать энтропию коэффициентов DCT в блоке изображения и, таким образом, найти истинное значение этого пикселя. При этом, уменьшение модулей коэффициентов, близких к нулю, будет иметь большее значение, чем уменьшение коэффициентов с большими значениями модулей. В результате такой минимизации энтропии будут подавлены (уменьшены) в основном коэффициенты, близкие к нулю, а информационная часть коэффициентов, сосредоточенная в длинных хвостах гистограммы, останется без больших изменений.

При вычислении суммарной энтропии коэффициентов ДКП блоков можно воспользоваться выражениями (1) и (2), но вычислительно проще аппроксимировать их функцией, приведенной на рис. 6. При этом, целевая функция, которую нужно минимизировать для какого-то блока изображения, примет вид:

, (3)

где Xij – значение ij-го коэффициента DCT блока; N и M – размеры блока изображения.

Для минимизации функции E для заданной точки можно либо перебрать все возможные значения этой точки от 0 до 255, либо воспользоваться одним из численных методов оптимизации.

Отметим, что для любой заданной точки изображения и заданных размеров блока расположение блока с заданной точкой внутри него можно выбирать несколькими способами (рис. 9).



Рис. 9. Два возможных положения блока 8×8 пикселей (черная рамка) для оценки значения неизвестного (утерянного) пикселя (черная точка)

На рис. 9 приведено лишь два возможных способа выбора положения блока (скользящего окна) для оценки значения неизвестного пикселя. Для блоков размером 8×8 пикселей таких возможных положений будет 64, для блоков размером 16×16 пикселей – 256 и т.д. Очевидно, что оцененные значения пикселя для разного положения блока могут отличаться друг от друга. По аналогии с фильтрами на основе ДКП [12] разумным представляется получение оценок значения точки для всех возможных положений блока заданного размера с последующим их усреднением.

В предельном случае можно брать в качестве одного большого блока все изображение, однако лучшей декорреляции данных можно достичь при размерах блоков от 8×8 пикселей до 64×64 пикселя [17]. При этом следует отметить, что при переходе, например, от блоков 8×8 к блокам 64×64 время, необходимое для оценки значения какой-либо точки, увеличится не менее, чем в 16 раз. Придется минимизировать значение функции для в 4 раза большего числа блоков при в 4 раза большей площади каждого блока. Поэтому оптимальным на практике, очевидно, будет являться использование блоков с размерами 8×8 и 16×16 либо их комбинации.

Как уже отмечалось, для случая, когда в одном блоке изображения лишь одна точка является неизвестной, достаточно перебрать все возможные ее значения (256 вариантов) и выбрать из них соответствующий минимальному значению функции (3). Если же таких неизвестных точек внутри блока 2 или, например, 5, то число всех вариантов, которые необходимо перебрать, становится равным уже соответственно 2562 и 2565 . Полный перебор здесь уже невозможен. Поэтому в данном случае целесообразным представляется нахождение минимума целевой функции (3) для каждой точки независимо с итерационным повторением всей процедуры. Так как в расчете целевой функции будут участвовать значения неизвестных точек, то для ускорения итерационного процесса целесообразно их инициализировать значением выхода какого-либо простого линейного фильтра, например, низкочастотного Гауссовского с окном 5×5 и среднеквадратическим отклонением 0,5 (LPG) (см. табл. 1), который мы будем использовать в данной работе.

Таблица 1

Веса пикселей для LPG

0,0001 0,0281 0,2075 0,0281 0,0001
0,0281 11,3318 83,7311 11,3318 0,0281
0,2075 83,7311 618,6935 83,7311 0,2075
0,0281 11,3318 83,7311 11,3318 0,0281
0,0001 0,0281 0,2075 0,0281 0,0001

Перед тем, как перейти к анализу эффективности предлагаемого подхода при решении задач подавления импульсного шума и реконструкции утерянных участков изображений, постараемся предварительно оценить эффективность различных размеров скользящего окна. Для стандартных тестовых изображений Baboon, Barbara и Lena (все 512×512 пикселей в оттенках серого цвета) оценим значение каждой точки изображения, а затем вычислим пиковое соотношение сигнал/шум (ПССШ) между истинным и оцененным значениями. Полученные результаты сведены в табл. 2.


Таблица 2

Точность оценки значений пикселей изображения, ПССШ, дБ

Размер блока

изображения

Baboon Barbara Lena
8×8 25,74 38,29 36,91
16×16 26,09 38,98 37,07

К-во Просмотров: 251
Бесплатно скачать Контрольная работа: Реконструкция значений утраченных точек изображений по энтропии коэффициентов дискретного косинусного преобразования