Контрольная работа: Решение задач по курсу теории вероятности и математической статистики

в) всех трёх устройств.

Обозначим события: А – срабатывает только одно устройство; В – срабатывают 2 устройства; С – срабатывают все 3 устройства. Вероятности противоположных событий (не срабатывания) соответственно равны q1 = 0,1, q2 = 0,05, q3 = 0,15. Тогда

а) Р(А) = p1 q2 q3 + q1 p2 q3 + q1 q2 p3 = 0,9∙0,05 ∙0,15 + 0,1∙0,95∙0,15 + 0,1∙0,05∙0,85 = 0,02525.

б) Р(В) = p1 p2 q3 + p1 q2 p3 + q1 p2 p3 = 0,9∙0,95∙0,15 + 0,9∙0,05∙0,85 + 0,1∙0,95∙0,85 = 0,24725.

в) Р(С) = р1 р2 р3 = 0,9∙0,95∙0,85 = 0,72675.

№ 12

В партии из 1000 изделий имеется 10 дефектных. Найти вероятность того, что из взятых наудачу из этой партии 50 изделий ровно 3 окажутся дефектными.

По условию n = 50, k = 3. Поскольку р малó, n достаточно большое, в то же время nр = 0,5 < 9, справедлива формула Пуассона:.

Таким образом,

№ 22

По данному закону распределения дискретной случайной величины Х определить математическое ожидание М(Х), дисперсию D(X) и среднее квадратическое отклонение σ(Х).

хі 2 3 4 5 8
рі 0,25 0,15 0,27 0,08 0,25

Последовательно получаем:

5

М(Х) = ∑ хі рі = 2∙0,25 + 3∙0,15 + 4∙0,27 + 5∙0,08 + 8∙0,25 = 4,43.

i=1

5

D(X) = ∑ xi ²pi – M² = 2²∙0,25 + 3²∙0,15 + 4²∙0,27 +5²∙0,08 + 8²∙0,25 – 4,43² і=1

= 5,0451.

σ(Х) = √D(X) = √5,0451= 2,246.

№ 32

Случайная величина Х задана интегральной функцией

а) дифференциальную функцию f(x) (плотность вероятности);

б) математическое ожидание и дисперсию величины х;

в) вероятность того, что X примет значение, принадлежащее интервалу

;

г) построить графики функций F(x) и f(x).

Последовательно получаем:

а) ;

в) Р(a < x < b) = F(b) – F(a) ÞP= F(1) – F=

К-во Просмотров: 264
Бесплатно скачать Контрольная работа: Решение задач по курсу теории вероятности и математической статистики