Контрольная работа: Статистическое изучение взаимосвязей
Определяя средние значения результативного признака для данной группы значений признака отчасти элиминируется влияние случайностей. Вычисляя параметры теоретической линии связи, производится их дальнейшее элиминирование и результатом является однозначное изменение Y с изменением фактора Х.
Теоретической линией регрессии называется та линия, вокруг которой группируется точки корреляционного поля и которая указывает основное направление, основную тенденцию связи.
Эта линия должна быть проведена так, что бы сумма отклонений точек поля корреляции от соответствующей теоретической линии регрессии равнялась нулю, а сумма квадратов этих отклонений была бы минимальной величиной.
Важным этапом регрессионного анализа является определение типа функции, с помощью которой характеризуется зависимость между признаками. Наиболее часто для характеристики связей экономических явлений используют следующие типы функций:
линейную ;
гиперболическую ;
параболическую ;
степенную
В рассматриваемом примере линии регрессии больше всего приближается к прямой и следовательно, теоретическая линия регрессии может быть представлена уравнением прямой
;
Для нахождения параметров а и b уравнения регрессии используем метод наименьших квадратов.
Критерий методов наименьших квадратов можно записать таким образом
т.к , то
После преобразований с используем производных получим систему уравнений способа наименьших квадратов для определения параметров а и b уравнения линейной корреляционной связи.
Используя данные таблиц 3 и 4 можно записать систему уравнений
Параметр b в уравнении называют коэффициентом регрессии. При наличии прямой корреляционной зависимости коэффициент регрессии имеет положительное значение, а в случае обратной - коэффициент регрессии отрицательный.
Коэффициент регрессии показывает, насколько в среднем изменится величина результативного признака Y при изменении факторного признака Х на единицу.
Зная линейный коэффициент корреляции можно определить коэффициент регрессии b по следующей формуле
,
где , - средне квадратичное отклонение результативного и факторного признаков.
Наличие этого соотношения дает возможность производить вычисление коэффициента корреляции и параметров уравнения линейной регрессии одновременно.
Расчет показателей по не сгруппированным данным приводит к следующим результатам
= 0,0386, = 0,3461, r = - 0,812
тогда
и