Контрольная работа: Вычисление интегралов
Поэтому
ΔL = = ,
а длина всей ломанной MMM … MM равна
L = ΔL = .
Длина кривой AB, по определению, равна
L = L = ΔL.
Заметим, что при ΔL 0 также и ΔX 0 (ΔL = и следовательно | ΔX | < ΔL). Функция непрерывна на отрезке [a, b], так как, по условию, непрерывна функция f (X). Следовательно, существует предел интегральной суммы L=ΔL= , кода max ΔX 0:
L = = dx.
Таким образом, L = dx.
Пример: Найти длину окружности радиуса R. (рис 3)
|
Найдем ¼ часть ее длины от точки (0; R) до точки (R; 0). Так как
y = , ¼L = dx = R arcsin = R .
Значит L = 2R.
Полярные координаты
Пусть кривая AB задана уравнением в полярных координатах r = r(), . Предположим, что r() и r() непрерывны на отрезке [].
Если в равенствах x = rcos, y = rsin, связывающих полярные и декартовы координаты, параметром считать угол , то кривую AB можно задать параметрически
Тогда
Поэтому
= =
Применяя формулу L = ,
получаем L =
|
Пример:Найти длину кардиоиды r = a (1 + cos). (рис. 4)
Решение:Кардиоида r = a (1 + cos) симметрична относительно полярной оси. Найдем половину (рис 4) длины кардиоиды:
½ L ==a=a = 2a cos d = 4a sin = 4a.
4. Нахождение объема тел