Курсовая работа: Аффинные преобразования

Для доказательства проведем АС, затем DL||AC. Построим также А'С' и D'L'||A'C'. По свойству 2 прямая DL переходит в D'L' и значит, . Теперь по определению: . Но AL=CD, A'L'=C'L', поэтому отсюда сразу получается требуемое.

4.При аффинном преобразовании угол и отношение произвольных отрезков, вообще говоря, не сохраняются, так как любой треугольник можно перевести в любой другой. Поэтому высота и биссектриса треугольника преобразуются обычно в другие линии, медиана же переходит в медиану, так как середина отрезка переходит в середину.

5. При аффинном преобразовании параллелограмм переходит в параллелограмм, трапеция в трапецию.

2.3 Эквивалентные фигуры

Аналогично понятию равенства и подобия фигур вводится понятие их аффинной эквивалентности.

Фигура F1 называется аффинно эквивалентной фигуре F2, если F1 можно аффинным преобразованием перевести в F2.

Корректность этого определения вытекает из того, что аффинные преобразования образуют группу и, следовательно, введенная здесь аффинная эквивалентность обладает транзитивностью, рефлексивностью, симметричностью.

Отметим некоторые классы аффинно эквивалентных фигур.

1). Все треугольники аффинно эквивалентны (следует из основной теоремы).

2). Все параллелограммы аффинно эквивалентны.

3). Для аффинной эквивалентности трапеций необходимо и достаточно, чтобы их основания были пропорциональны.

2.4 Перспективно-аффинное соответствие двух плоскостей

Предположим, что две плоскости wи w' пересекаются по линии хх (черт. 1). Зададим какую-нибудь прямую l, пересекающую обе плоскости. Отметим на плоскости w произвольную точку А и спроектируем ее на плоскость w', проводя через А прямую, параллельную l. Пусть проектирующая прямая пересечет плоскость w' в точке А'. Точку А' можно рассматривать как проекцию точки А на плоскость w'. Такая проекция называется параллельной и определяется заданием прямой l.

Из самого построения проекции А' точки А видно, что в свою очередь точку А можно рассматривать как проекцию точки А' на плоскость w. Таким образом, параллельная проекция представляет собой аппарат, имеющий совершенно одинаковое значение по отношению к обеим плоскостям wи w'. Она относит каждой точке (А) первой плоскости вполне определенную точку (А') второй, и обратно. Мы получаем попарное соответствие точек плоскостей wи w'. Это соответствие является взаимно однозначным, т. е. каждой точке одной плоскости соответствует единственная точка второй, и обратно.

Соответствие плоскостей wи w', установленное с помощью параллельной проекции, называется перспективно- аффинным или родственным.

Если рассматривают процесс перехода от одной из данных плоскостей (например, w) к другой плоскости (w'), при котором каждая точка (А) одной плоскости (w) переходит в соответствующую точку (А') другой плоскости (w'), как односторонний, то его называют преобразованием плоскости (w) в плоскость (w')- В этом случае точку А называют прообразом, а точку А' - ее образом.

Проектируя параллельно плоскость w на плоскость w' , производим перспективно-аффинное преобразование плоскости w в плоскость w' .

Можно также совокупность всех точек плоскости w называть полем точек w и говорить о преобразовании поля точек w в поле точек w'.

Поставим себе задачу изучить свойства перспективно-аффинного соответствия плоскостей.

Займемся, прежде всего, вопросом о двойных, или неподвижных, точках нашего соответствия, т. е. о таких точках, которые совпадают сосвоими соответственными точками. Так как каждая двойная точка должна принадлежать как одной, так и другой плоскости, то они должны лежать на линии пересечения хх плоскостей wи w'. С другой стороны, очевидно, что каждая точка прямой хх есть двойная, так как она сама себе соответствует. Прямая называется осью соответствия. Согласно предыдущему ось соответствия может быть определена как геометрическое место двойных точек.

Рассмотрим далее какую-нибудь прямую АВ на плоскости w (черт. 1). Параллельная проекция этой прямой на плоскость w' есть прямая А'В'. Причем обе прямые либо пересекаются на оси хх, либо обе параллельны оси.

Таким образом, прямой линии на одной плоскости соответствует прямая же линия на другой. Это свойство перспективно-аффинного соответствия называют коллинеарностью. В силу самого определения параллельной проекции фигуры как геометрического места проекций всех точек этой фигуры каждой точке, лежащей на прямой, всегда соответствует точка, лежащая на соответственной прямой. Поэтому взаимопринадлежность точки и прямой на одной плоскости влечет за собой взаимопринадлежность соответственных элементов на второй.

2. Следующее свойство перспективно-аффинного соответствия касается так называемого простого отношения трех точек прямой.

Рассмотрим три точки А, В, С, лежащие на одной прямой (черт 1). Простое отношение точек А, В, С определяется формулой:

геометрический преобразование аффинный соответствие

В этой формуле точки А и В считаются основными (или базисными), а точка С- делящей. Простое отношение (ABC) представляет собой отношение длин тех отрезков, которые делящая точка образует с основными. Если точка С лежит вне отрезка А В, то оба отрезка АС и ВС одинаково направлены, и поэтому в этом случае простое отношение (ABC) положительно. В случае, когда делящая точка С находится между А и В, простое отношение (ABC) отрицательно.

На чертеже 1 видно, что точкам А,В, С плоскости w соответствуют точки А', В', С' плоскости w'. Так как проектирующие прямые АА', ВВ', СС' параллельны, то будем иметь:

К-во Просмотров: 524
Бесплатно скачать Курсовая работа: Аффинные преобразования