Курсовая работа: Алгоритмы преобразования ключей
mcv Ы,97 m2: push bx
mov buf .bufjn.bi :опятьвычисляемхэш-функцию:
А»С*1-97 и преобразуем "количество" в символьный вид
sub Ы. 97
mov al .[bx]
aam
or ax,03030h ;в ах длина в символьном виде
mov buf.len in.al —
mov buf.len_buf.ah ;теперь выводим:
mov ah, 09h
int 21h pop bx
inc Ы
loop m2
Таким образом, относительно сложная с первого взгляда задача очень просто реализуется с помощью методов хэширования. При этом обеспечивается высокая скорость выполнения операций доступа к элементам таблицы. Это обусловлено тем, что адреса, по которым располагаются элементы таблицы, являются результатами вычислений простых арифметических функций от содержимого соответствующих ключевых слов.
Перечислим области, где методы хэширования оказываются особенно эффективными.
· Разработка компиляторов, программ обработки текстов, пользовательских интерфейсов и т. п. В частности, компиляторы значительную часть времени обработки исходного текста программы затрачивают на работу с различными таблицами — операций, идентификаторов, констант и т. д. Правильная организация работы компилятора с информацией в этих таблицах означает значительное увеличение скорости создания объектного модуля, может быть, даже не на один порядок выше. Кстати, другие системные программы — редакторы связей и загрузчики — также активно работают со своими внутренними таблицами.
· Системы управления базами данных. Здесь особенный интерес представляют алгоритмы выполнения операций поиска по многим ключам, которые также основаны на методе хеширования.
· Разработка криптографических систем.
· Поиск по соответствию. Методы хеширования можно применять в системах распознавания образов, когда идентификация элемента в таблице осуществляется на основе анализа ряда признаков, сопровождающих объект поиска, а не полного соответствия заданному ключу. Если рассматривать эту возможность в контексте задач системного программирования, то ее можно использовать для исправления ошибок операторов при вводе информации в виде ключевых слов. Подробная информация о поиске по соответствию приведена в литературе.
Но на практике не все так гладко и оптимистично. Для эффективной и безотказной работы метода хеширования необходимо очень тщательно подходить как к изучению задачи на этапе ее постановки, так и к возможности использования конкретного алгоритма хеширования в контексте этой задачи. Так, на стадии изучения постановки задачи, в которой для доступа к табличным данным планируется использовать хеширование, требуется проводить тщательные исследования по направлениям: диапазон допустимых ключей, максимальное количество элементов в таблице, вероятность возникновения коллизий и т. д. При этом нужно знать как общие проблемы метода хеширования, так и частные проблемы конкретных алгоритмов хеширования. Одну из таких проблем рассмотрим на примере задачи.
Пусть необходимо подсчитать количество двухсимвольных английских слов в некотором тексте. В качестве хэш-функции для вычисления адреса можно предложить функцию подсчета суммы двух символов, умноженной на длину элемента таблицы: A=(Cl+C2)*L-97, где А — адрес в таблице, полученный на основе суммы двоичных значений символов С1 и С2; L — длина элемента таблицы; 97 — десятичное смещение в кодовой таблице строчного символа «а» английского алфавита. Проведем простые расчеты. Сумма двоичных значений двух символов 'а' равна 97+97=194, сумма двоичных значений двух символов 'г' равна 122+122=244. Если организовать хэш-таблицу, как в предыдущем случае, то получится, что в ней должно быть всего 50 элементов, чего явно недостаточно. Более того, для сочетаний типа ab и Ьа хэш-сумма соответствует одному числовому значению. В случае когда функция хеширования вычисляет одинаковый адрес для двух и более различных объектов, говорят, что произошла коллизия, или конфликт. Исправить положение можно введением допущений и ограничений, вплоть до замены используемой хэш-функции. Программист может либо применить один из известных алгоритмов хеширования (что, по сути, означает использование определенной хэш-функции), либо изобрести свой алгоритм, наиболее точно отображающий специфику конкретной задачи. При этом необходимо понимать, что разработка хэш-функции происходит в два этапа.
1. Выбор способа перевода ключевых слов в числовую форму.
2. Выбор алгоритма преобразования числовых значений в набор хеш-адресов.
3. Выбор способа перевода ключевых слов в числовую форму
Вся информация, вводимая в компьютер, кодируется в соответствии с одной из систем кодирования (таблиц кодировки). В большинстве таких систем символы (цифры, буквы, служебные знаки) представляются однобайтовыми двоичными числами. В последних версиях Windows (NT, 2000) используется система кодировки Unicode, в которой символы представляются в виде двухбайтовых двоичных величин. Как правило, ключевые поля элементов таблиц — строки символов, Наиболее известные алгоритмы закрытого хеширования основаны на следующих методах:
· деления;
· умножения;
· извлечения битов;
· квадрата;