Курсовая работа: Анализ и расчет характеристик среднеорбитальной системы типа: ГЛОНАС, NAV-STAR
Рассчитывается погрешность местоопределения судна (на поверхности) в среднеорбитальной спутниковой РНС и по дифференциальной подсистеме - с учетом результатов п.3.1.3 - 3.1.4.
Данные расчета занести в табл.1.
Таблица 1
Система | ССРНС | Навстар | Диф. ССРНС |
sм (м) | 18,32 | 50,08 | 10,93 |
4. Режим определения путевой скорости, путевого угла и поправки к частоте опорного генератора
4.1 Модель фазового измерителя секундных приращений дальности до ИСЗ
Такой измеритель включает два верхних квадратурных канала рис.13.7 [1] и ГУН несущей, который состоит из высокостабильного неуправляемого опорного генератора ОГ и цифрового синтезатора частоты ЦСЧ, управляемого выходным сигналом схемы Костаса. ЦСЧ содержит регистр текущей разности фаз между колебаниями ОГ и принятого сигнала. Одному фазовому циклу соответствует равное длине волны приращение радиального расстояния от судна до ИСЗ. Из-за принципиальной многозначности фазовых измерений отсчет ЦСЧ в начальный момент времени t0 может отличаться от истинной величины измерявшегося в п.3.2.1 расстояния на неизвестное целое число длин волн. Поскольку это число сохранится во всех последующих отсчетах, то секундные изменения радиального расстояния, (как и приращения введенных в п.3.2.1 нормированных величин ) будут определяться однозначно. Это позволяет по системе четырех линейных уравнений п.3.2.1 однозначно рассчитать и секундные приращения, , , входящих в это уравнения X, Y, Z, d.
4.2 Определение секундных приращений координат
Они численно равны соответствующим проекциям вектора путевой скорости. А секундное приращение линейного эквивалента ухода шкалы времени в длинах волн равно разности между номиналами частот опорных генераторов ИСЗ и судна. Поэтому алгоритм определения перечисленных искомых величин сводится (после изменения обозначений по правилу: , , , ) к решению системы линейных уравнений п.3.1 в виде
.
Все полученные выше в п.3 аналитические выражения и численные значения для решения системы и геометрических факторов применимы и здесь с учетом изменения обозначений. В частности, погрешность оценки горизонтальной проекции
вектора путевой скорости и ухода частоты должны выражаться как
, .
Среднеквадратическая шумовая погрешность определения секундных приращений дальности в больше погрешности фазовых квазидальномерных отсчетов и выражается формулой
sDr»0,043[ПССН(N0/Р)]0,5 =0.152 (в м/с). (4.3)
Пссн=10
No/P=0.00007403 см.п. 2.3
Результаты расчетов, задаваясь П=10Гц, привести в таблице 2.
Таблица 2.
Величина | (м/c) | (Гц) | ||
Значение | 0,00116 | 0,1023520 | 0.000058697 |
При расчете использовались значения см.п.2.1,
Vx= 7.583626043 м/с; Vy= 8.511675278 м/с; см. п. 1.4.5
Путевой угол ПУ=arctg(Vx/Vy)- это угол между проекцией Vxy вектора V на горизонтальную плоскость Погрешность оценки путевого угла приближенно выражается формулой
.
5. Режим определения истинного курса, крена, дифферента
5.1 Основные понятия пространственной угловой ориентации судна
Ориентация судна это ориентация судовой системы координат относительно неподвижной (пусть – горизонтной) системы координат x,y,z с базисными ортами xо, yо, zо. Вектора (и орты) обозначаются жирным курсивом. Судовая ортогональная система координат фиксируется на каждом судне в процессе строительства и сдаточных испытаний, причем горизонтальная, продольная и поперечная плоскости пересекаются по поперечной, продольной и вертикальной осям. Начальная точка отсчета – точка пересечения осей. Ось абсцисс хП с ортом a и ось ординат уП с ортом b совпадают соответственно с по перечной и продольной осями судна. Орт оси аппликат zП равен a´b и перпендикулярен ортам a и b.
Проекции любого орта е на оси x,y,z координат равны их направляющим косинусам НК (углов между ортом и осями): Прхе=сх, Пруе=су, Прzе=сz. Если проекции этого орта отложить от начала координат и построить прямоугольный параллелепипед, то исходящая из начала координат диагональ такого параллелепипеда и представляет рассматриваемый орт е=x0cx+y0сy+z0cz причем сх2+су2+сz2=1. Это равенство указывает, что вся информация о пространственной угловой ориентации орта любой оси содержится в трех НК. А полная информация об ориентации судна (т.е. о трех осях подвижной системы координат) содержится в матрице из девяти НК; причем равенство нулю скалярных произведений ортов(см./13/,п.14.10-1b) позволяет всегда указать на три НК, через которые выражают и остальные шесть.
Орты продольной и поперечной осей судна далее будут представляться как
b=x0cbx+y0 сby+z0cbz, a=x0cax + y0 cay + z0c az , ( 5.1 )