Курсовая работа: Анализ на чувствительность двойственных оценок

Для изготовления трех видов продукции грузовик, легковой автомобиль и мотоцикл игрушечная фабрика использует три вида продукции, их наличие в распоряжении предприятия, а так же цена единицы продукции приведены в таблице 2

Таблица 2

Исходные данные

Вид сырья Нормы затрат сырья Наличие ресурса
A B C
1 грузовик 1 1 1 430
2 Легковой автомобиль 3 0 2 460
3 мотоцикл 1 4 0 420
4 Цена ед. продукции 3 2 5

Требуется:

сформулировать двойственную задачу и найти оптимальные планы прямой и двойственной задачи.

найти интервалы устойчивости двойственных оценок по отношению к изменениям ресурсов каждого типа.

выявить изменения общей стоимости изготовляемой продукции, определяемой оптимальным планом ее производства при уменьшении количества ресурса I типа на 130 единиц и увеличения количества ресурсов II и III типа на 120 и 110 единиц.

Провести анализ возможного изменения общей стоимости продукции как при изменении объемов каждого из ресурсов по отдельности, так и при одновременном изменении в указанных размерах.


2.2 Математическая модель исходной задачи

Пусть xj – количество изделий j –го вида;aij – затраты времени на единицу продукции вида j на оборудовании i-го типа, cj – стоимость единицы изделия вида j, si – общий фонд рабочего времени на оборудовании типа i.

Целевая функция:

L = 3x1 + 2x2 + 5x3 → max

Ограничения:

x1 +x2 +x3 + x4 =430

3x1 + 2x3 + x5 = 46

x1 + 4x2 +x6 =420

xj ≥ 0 , j = 1,6

Составляется матрица из коэффициентов при неизвестных в системе ограничений исходной задачи.

А=

2.3 Математическая модель двойственной задачи

Число переменных в двойственной задаче равно числу уравнений в системе исходной задачи, т. е. равно семи.

Целевая функция исходной задачи исследуется на максимум, а система условий содержит только уравнения. Поэтому в двойственной задаче целевая функция исследуется на минимум, а ее переменные могут принимать любые значения (в том числе и отрицательные). Следовательно, для исходной задачи двойственная задача такова:

Найти минимум функции:

Ограничения:

И составляется аналогичная матрица, которая получается транспонированием (т.е. заменой строк столбцами, а столбцов – строками).

АТ =

2.4 Нахождение решения исходной задачи

Задача записывается в форме основной задачи линейного программирования.

К-во Просмотров: 328
Бесплатно скачать Курсовая работа: Анализ на чувствительность двойственных оценок