Курсовая работа: Автоколебательная система. Волны пластической деформации

В ходе работы были найдены особые точки и показатели Ляпунова из системы дифференциальных уравнений методом фазовой плоскости. После чего были численно решены эти же системы дифференциальных уравнений и были построены фазовые портреты.


ПЕРЕЧЕНЬ ССЫЛОК

1. Олемской А.И., Хоменко А.В. Синергетика конденсированной среды: Учебное пособие. – Сумы: Изд-во СумГУ, 2002. – 19-44 с., 373 с.

2. Гнеденко Б.В. Курс теории вероятности. – М.: Наука, 1988. – 448 с.

3. Методичні вказівки до виконання курсової роботи з курсу «Моделювання фізичних процесів і систем» / Укладач: Хоменко О.В. – Суми: СумДУ, 2009. – 14с.

4. Методичні вказівки до виконання курсової роботи з курсу «Моделювання фізичних процесів і систем» на тему «Синергетична кінетика плавлення ультра тонкої плівки мастила »/ Укладач: Хоменко О.В. – Суми: СумДУ, 2010. – 4 - 11 с.


ПРИЛОЖЕНИЕ А

Программная реализация построения фазовых портретов волн автоколебательной системы

clear all;

alpha=0.8;

beta=1.1;

f=@(t,y)[-(y(1)/alpha)*(1-beta*y(2));y(2)*(1-y(1)-y(2))];

for i=0:1/5:1,

for j=0:1/5:1,

[T,Y]=ode45(f,[0 100],[i j]);

plot(Y(:,1),Y(:,2));

hold on;

end

end

hold off;

axis([0 1 0 1]);

pause;

clear all;

alpha=0.8;

beta=10;

f=@(t,y)[-(y(1)/alpha)*(1-beta*y(2));y(2)*(1-y(1)-y(2))];

for i=0:1/2:1,

for j=0:1/2:1,

[T,Y]=ode45(f,[0 100],[i j]);

plot(Y(:,1),Y(:,2));

hold on;

К-во Просмотров: 305
Бесплатно скачать Курсовая работа: Автоколебательная система. Волны пластической деформации