Курсовая работа: Автоматическая система регулирования температуры
.
2.5 Анализ устойчивости линейной модели системы
По передаточной функции замкнутой системы можно судить о том, что система структурно устойчива (т.е. ее нельзя вывести из устойчивости, увеличивая общий коэффициент передачи). Объясняется это тем, что порядок п.ф. получается n=2, следовательно фазовый сдвиг не может превысить 180º без включения звена чистого запаздывания.
(Увеличенный масштаб)
Очевидно, что нет смысла определять устойчивость системы другими методами и искать запасы по амплитуде и фазе.
2.6 Определение показателя колебательности. Построение области устойчивости системы в плоскости параметров регулирующего устройства (Кр, Тр)
2.6.1 Показатель колебательности
Определяем эту величину Ммакс по формуле
P2+Q2=M2[(1+P)2+Q2], где
P- действительная часть ПФ разомкнутой системы
Q- мнимая часть ПФ разомкнутой системы.
Тогда получаем, что при ω=0 значение АЧХ максимально. Значит получаем М2=104/101=1,0297; тогда М=
2.6.2 Область устойчивости системы в области параметров ПИ регулятора.
Характеристический полином системы:
Нас интересуют переменные Tp и Кр, запишем в виде:
Определим условие устойчивости по критерию гурвица:
Δn==0
Получим:
Решив в Maple уравнение относительно Tp получим выражение для построений области устойчивости:
Построим график этой зависимости:
2.7 Корневой годограф системы
2.8 Импульсные и переходные характеристики разомкнутой системы относительно задающего и возмущающего воздействий
Импульсная и переходная характеристики относительно задающего воздействия