Курсовая работа: Численные методы решения типовых математических задач

Докажем это. Пусть х=х0 , тогда многочлен (2.2) равен

Пусть х=х1 , тогда многочлен (2.2) равен

Пусть х=х2 , тогда многочлен (2.2) равен

Заметим, что решение задачи интерполяции по Ньютону имеет некоторые преимущества по сравнению с решением задачи интерполяции по Лагранжу. Каждое слагаемое интерполяционного многочлена Лагранжа зависит от всех значений табличной функции yi , i=0,1,…n. Поэтому при изменении количества узловых точек N и степени многочлена n (n=N-1) интерполяционный многочлен Лагранжа требуется строить заново. В многочлене Ньютона при изменении количества узловых точек N и степени многочлена n требуется только добавить или отбросить соответствующее число стандартных слагаемых в формуле Ньютона (2.2). Это удобно на практике и ускоряет процесс вычислений.

2.5 Схема алгоритма

На рисунке 2.1 представлена схема алгоритма решения задачи №2.

На рисунке 2.2 представлена схема алгоритма ввода исходных данных (подпрограмма-процедура Vvod).

На рисунке 2.3 представлена схема алгоритма интерполяции функции по методу Ньютона с разделенными разностями (newt)

На рисунке 2.4 представлена схема алгоритма записи данных и результата в файл (подпрограмма-процедура zapisb_v_fail).

На рисунке 2.5 представлена схема алгоритма вывода содержимого записанного файла на экран (подпрограмма-процедура outputtoscreen).

2.6 Текст программы

program newton;

uses crt,graph;

const c=10;

type matr=array[0..c,0..c] of real;

mas=array[0..c] of real;

var x,y,koef_polinoma:mas;

a:matr;

b:mas;

d1:real;

n:integer;

fail,fail1,ekran:text;

procedure Vvod(var kolvo:integer; var uzel,fun:mas);

{Процедура осуществляет ввод данных:пользователь вводит с клавиатуры

узлы интерполяции и значения функции в них. Также определяется количество узлов.}

var code,i:integer; s:string;

begin

К-во Просмотров: 671
Бесплатно скачать Курсовая работа: Численные методы решения типовых математических задач