Курсовая работа: Деякі скінченно-різнецеві методи розвязування звичайних диференціальних рівнянь
LET anew = f(x) І значення на (п+1) -му кроці LET v = v + (2*anew + 5*a - aold)*dt/6
LET aold = a значення на (n-1) -му кроці
LET а = anew значення на n-му кроці END SUB
DEF f(x) LET e = exp(- x) LET f = 2*e*(e - 1) END DEF
SUB energY(x, v, ecum, e2cuin) LET KE = 0.5*v" v LET e = exp(- x) LET PE = e*{e - 2) LET etot = KE + PE LET ecum = ecum + etot LET e2cum = e2cum + etot*etot END SUB
SUB output{ecum, e2cuiT!, n) LET n = n + 1 І вирахування початкового значення
LET ebar = ecum/n PRINT "середня енергія = ";ebar LET sigma2 = e2cum/n - ebar*ebar PRINT "sigma = "; sqr(sigma2) END SUB
Метод Адамса
Цей метод чисельного інтегрування розроблений Адамсом в 1855 році на прохання видомого англійського алтелериста Башфора, який займався внутрішньою балістикою. В подальшому цей метод був забутий і знову відкритий був норвезьким математиком Штермером. Популяризація метода Адамса і подальше його вдосконалення пов’язане із іменем Крилова.
Запишемо рівняння першого порядку
З початковими умовами (1,2)
Нехай xi ( i =0,1,2…)- система рівнозначних значень з кроком h i y(xi ). Очевидно маємо
(3)
В силу другої інтерполяційної формули Ньютона з точністб до різниць четвертого порядку отримуємо:
(4)
де або (4а)
Підставляю вираз (4а) в формулу (3) і враховуючи те, що будемо мати
З відси отримуємо формулу експоляриціональну Адамса
(5)
Для початкового процессу потрібно чотири початкових значення y0, y1, y2 , y3, - початковий відрізок, який приділяє, виходячи із початкових умов (2), яким-небуть чисельним методом. Мажна наприклад використати метод Рунге-Кутта або розкласти в ряд Тейлора
Де i =1,2,3 (або i =-1,1,2) із відповідною зміною нумерування. Знаючи ці значення, із рівнянь (1) можна знайти значення похідних і скласти таблицю
(6)
Подальше значення yi ( i =4,5…) шуканого розвязку можна крок за кроком обчислювати за формулою Адамса, поповнюючи по мірі можливості таблицю різниць (6)
Вирахувавши перше наближення для по формулі
Визначити підрахувати кінцеві різниці
(7)