Курсовая работа: Дисперсионный анализ показателей смертностей населения Нерюнгринского улуса
. (20)
Значение коэффициента множественной корреляции оценивается с помощью таблицы 2 [1]:
Таблица Чеддока Таблица 2
диапазон измерения | характер тесноты |
слабая | |
умеренная | |
заметная | |
высокая | |
весьма высокая |
1.3. Множественный корреляционный анализ
Расчеты обычно начинают с вычисления парных коэффициентов корреляции, характеризующих тесноту связи между двумя величинами. В множественной ситуации вычисляют два типа парных коэффициентов корреляции:
1. - коэффициенты, определяющие тесноту связи между функцией отклика y и одним из факторов [2]:
. (21)
2. - коэффициенты, показывающие тесноту связи между одним из факторов xi и фактором xm (i, m=) [2]:
(22)
.
Значение парного коэффициента изменяется, как указывалось выше, изменяется от -1 до +1. Если, например, коэффициент - величина отрицательная, то это значит, что xi уменьшается с увеличением y. Если положителен, то xi увеличивается с увеличением y.
Значимость парных коэффициентов корреляции можно проверить двумя способами:
1)сравнение с табличным значениями [2]:
, (23)
2) по t-критерию Стьюдента [2]:
, (24)
Где - среднеквадратическая погрешность выборочного парного коэффициента корреляции [2]:
. (25)
Здесь определяется по таблице с числом степеней свободы .
Доверительный интервал для парных коэффициентов корреляции [2]:
, (26)
где - парный коэффициент корреляции в генеральной совокупности.
Если один из коэффициентов окажется равным 1, то это означает, что факторы xi и xm функционально (не вероятностно) связаны между собой и тогда целесообразно один из них исключить из рассмотрения, причем оставляют тот фактор, у которого коэффициент больше.
После вычисления всех парных коэффициентов корреляции и исключения из рассмотрения того или иного фактора можно построить матрицу коэффициентов корреляции вида [2]:
. (27)
Используя матрицу (23) можно вычислить частные коэффициенты, которые показывают степень влияния одного из факторов xi на функцию отклика y при условии, что все остальные факторы закреплены на постоянном уровне. Формула для вычисления частных коэффициентов корреляции такова [2]:
, (28)
где - определитель матрицы, образованной из матрицы (27) вычеркиванием 1-й строки, i-го столбца. Определители , вычисляются аналогично. Как и парные коэффициенты, частные коэффициенты корреляции изменяются от -1 до +1.
2. Аналитическая часть