Курсовая работа: Дослідження дзета-функції Римана
Зміст
Введення
Розділ 1
Розділ 2
Розділ 3
Список літератури
Введення
Функція - одне з основних понять у всіх природниче наукових дисциплінах. Не випадково ще в середній школі діти одержують інтуїтивне уявлення про це поняття. Зі шкільної лави наш багаж знань поповнюється відомостями про такі функції як лінійна, квадратична, статечна, показова, тригонометричні й інших. У курсі вищої математики коло відомих функцій значно розширюється. Сюди додаються інтегральні й гіперболічні функції, Ейлерови інтеграли (гама- і бета-функції), тета-функції, функції Якоби й багато інших.
Що ж таке функція? Строгого визначення для неї не існує. Це поняття є в математиці первинним. Однак, під функцією розуміють закон, правило, по якому кожному елементу якоїсь множини X ставиться у відповідність один або кілька елементів множини Y . Елементи множини X називаються аргументами, а множини Y – значеннями функції. Якщо кожному аргументу відповідає одне значення, функція називається однозначної, якщо більше одного – то багатозначної. Синонімом функції є термін «відображення». У найпростішому випадку множина X може бути підмножиною поля дійсних R або комплексних C чисел. Тоді функція називається числовий. Нам будуть зустрічатися тільки такі відображення.
Функції можуть бути задані багатьма різними способами: словесним, графічним, за допомогою формули. Функція, що ми будемо розглядати в цій роботі, задається через нескінченний ряд. Але, незважаючи на таке нестандартне визначення, по своєму поданню у вигляді ряду вона може бути добре вивчена методами теорії рядів і плідно застосована до різних теоретичних і прикладних питань математики й суміжних з нею наук.
Звичайно ж, мова йде про знамениту дзета-функцію Римана, що має найширші застосування в теорії чисел. Уперше ввів неї в науку великий швейцарський математик і механік Леонард Ейлер і одержав багато хто її властивості. Далі активно займався вивченням дзета-функції німецький математик Бернгард Риман. На честь його вона одержала свою назву, тому що він опублікував декілька винятково видатних робіт, присвячених цієї функції. У них він поширив дзета-функцію на область комплексних чисел, знайшов її аналітичне продовження, досліджував кількість простих чисел, менших заданого числа, дав точну формулу для знаходження цього числа за участю функції й висловив свою гіпотезу про нулі дзета-функції, над доказом або спростуванням якої безрезультатно б'ються кращі розуми людства вже майже 150 років.
Наукова громадськість уважала й уважає рішення цієї проблеми однієї із пріоритетних задач. Так Давид Гильберт, що виступав на Міжнародній Паризькій математичній конференції 1900 року з підведенням підсумків розвитку науки й розглядом планів на майбутнє, включив гіпотезу Римана в список 23 проблем, що підлягають рішенню в новому сторіччі й здатних просунути науку далеко вперед. А на рубежі століть, в 2000 році американський The Clay Mathematics Institute назвав сім задач, за рішення кожної з яких буде виплачений 1 мільйон доларів. У їхнє число також потрапила гіпотеза Римана.
Розділ 1
Отже, приступимося до вивчення цієї важливої й цікавої дзета-функції Римана. У даній главі ми одержимо деякі властивості функції в речовинній області, виходячи з її визначення за допомогою ряду.
Визначення. Дзета-функцією Римана ζ(s) називають функцію, що будь-якому дійсному числу s ставить у відповідність суму ряду
(1)
якщо вона існує.
Основною характеристикою будь-якої функції є область визначення. Знайдемо неї для нашої функції.
Нехай спочатку s≤ 0, тоді s =−t , де t належить множині ненегативних дійсних чисел R+ {0}. У цьому випадку й ряд (1) звертається в ряд , що, мабуть, розходиться як при t >0, так і при t =0. Тобто значення s≤ 0 не входять в область визначення функції.
Тепер нехай s >0. Для дослідження збіжності ряду (1) скористаємося інтегральною ознакою Коші. При кожному s розглянемо функцію , де , що є на проміжку безперервної, позитивної й монотонно убутної. Виникає три різних можливості:
0<s <1. Тоді , тому ряд (1) розходиться й проміжок (0;1) не входить в область визначення дзета-функції;
s =1. Одержуємо, тобто при s =1 дзета-функція Римана також не визначений;
s >1. У цьому випадку
. Ряд (1) сходиться.
Узагальнивши результати, знаходимо, що область визначення дзета-функції є проміжок . На цьому проміжку функція виявляється безперервної нескінченне число раз.
Доведемо безперервність функції ζ(s) на області визначення. Візьмемо довільне число s0 >1. Перепишемо ряд (1) у вигляді . Як було вище показане, ряд сходиться, а функції при s >s0 монотонно убувають і все разом обмежено одиницею. Виходить, по ознаці Абеля для s >s0 ряд (1) сходиться рівномірно. Використовуючи теорему про безперервність суми функціонального ряду, одержуємо, що в будь-якій крапці s >s0 дзета-функція безперервн. Через довільність s0 ζ(s) безперервна на всій області визначення.
Тепер по членним диференціюванням ряду (1), поки формально, знайдемо похідну дзета-функції Римана:
(2).
Щоб виправдати цей результат, досить упевнитися в тім, що ряд (2) рівномірно сходиться на проміжку й скористатися теоремою про диференціювання рядів. Використовуємо той же прийом. Зафіксуємо будь-яке s0 >1 і представимо ряд (2) у вигляді для s >s0 . Множники , починаючи з n =2, монотонно убувають, залишаючись обмеженими числом ln 2. Тому по ознаці Абеля ряд (2) сходиться рівномірно при s>s0 , а значить і при будь-якому s >1. Яке би значення s >1 не взяти його можна укласти між і , де , а ; до проміжку застосовна вищевказана теорема.
Таким же шляхом можна переконатися в існуванні для дзета-функції похідних всіх порядків і одержати їхні вираження у вигляді рядів:
.
Спробуємо побудувати наочне зображення функції у вигляді графіка. Для цього вивчимо спочатку її поводження на нескінченності й в околиці крапки s =1.
У першому випадку, через рівномірну збіжність ряду (1), по теоремі про по членний перехід до межі, маємо . При n =1 межа дорівнює одиниці, інші межі дорівнюють нулю. Тому .
Щоб досліджувати випадок , доведемо деякі допоміжні оцінки.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--