Курсовая работа: Доведення теоретико-математичних тотожностей і тверджень
Визначення. Нехай – деяка множина логічних змінних. Елементарна кон’юнкція, в яку входять усі логічні змінні, називається повною елементарною кон’юнкцією щодо множини .
Визначення. Нехай є повною елементарною кон’юнкцією щодо множини . Тоді містить у таблиці істинності лише одну одиницю, причому на наборі . І навпаки, якщо в таблиці істинності висловлення є лише одна одиниця на наборі , то є повною елементарною кон’юнкцією, причому
Визначення. Нехай – висловлення. Позначимо через множину всіх наборів , на яких . називається множиною істинності висловлення . Можна записати, що .
Теорема. Якщо , то .
Визначення. Диз'юнктивна нормальна форма називається досконалою (ДДНФ), якщо всі складові її елементарної кон’юнкції є повними.
Теорема. Нехай – висловлення, що не є тотожно хибним, тобто ,тоді
6.2.Завдання:
Звести до ДНФ таке висловлювання. ;
Розв‘язок:
X | Y | Z | W | ||||||||
0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
X | Y | Z | W |
К-во Просмотров: 410
Бесплатно скачать Курсовая работа: Доведення теоретико-математичних тотожностей і тверджень
|