Курсовая работа: Движение тела под действием силы тяжести

Из последнего уравнения следует, что движение происходит в плоскости Оxy

Имея уравнение движения точки, можно методами кинематики определить все характеристики данного движения.

1. Траектория точки. Исключая из первых двух уравнений (1) время t, получим уравнение траектории точки:

(2)

Это – уравнение параболы с осью, параллельной оси Оy . Таким образом, брошенная под углом к горизонту тяжёлая точка движется в безвоздушном пространстве по параболе (Галилей).

2. Горизонтальная дальность. Определим горизонтальную дальность, т.е. измеренное вдоль оси Оx расстояние ОС=Х. Полагая в равенстве (2) y=0, найдём точки пересечения траектории с осью Ох . Из уравнения:

получаем

Первое решение дает точку О, второе точку С. Следовательно, Х=Х2 и окончательно


(3)

Из формулы (3) видно, что такая же горизонтальная дальность X будет получена при угле β, для которого 2β=180° - 2α , т.е. если угол β=90°-α . Следовательно, при данной начальной скорости v0 в одну и ту же точку С можно попасть двумя траекториями: настильной (α<45°) и навесной (β=90°-α>45°)

При заданной начальной скорости v0 наибольшая горизонтальная дальность в безвоздушном пространстве получается, когда sin 2 α = 1, т.е. при угле α=45°.

то найдется высота траектории Н:

(4)

Время полета. Из первого уравнения системы (1) следует, что полное время полета Т определяется равенством Заменяя здесь Х его значением, получим

.

При угле наибольшей дальности α=45° все найденные величины равны:


Полученные результаты практически вполне приложимы для ориентировочного определения характеристик полета снарядов (ракет), имеющих дальности порядка 200…600 км, так как при этих дальностях (и при ) снаряд основную часть своего пути проходит в стратосфере, где сопротивлением воздуха можно пренебречь. При меньших дальностях на результат будет сильно влиять сопротивление воздуха, а при дальностях свыше 600 км силу тяжести уже нельзя считать постоянной.

Движение тела, брошенного с высоты h.

Из пушки, установленной на высоте h, произвели выстрел под углом α к горизонту. Ядро вылетело из ствола орудия со скоростью u. Определим уравнения движения ядра.

Рис.13.Движение тела, брошенного с высоты.

Чтобы правильно составить дифференциальные уравнения движения, надо решать подобные задачи по определённой схеме.

а) Назначить систему координат (количество осей, их направление и начало координат). Удачно выбранные оси упрощают решение.

б) Показать точку в промежуточном положении. При этом надо проследить за тем, чтобы координаты такого положения обязательно были положительными.

в) Показать силы, действующие на точку в этом промежуточном положении (силы инерции не показывать!).

В этом примере – это только сила , вес ядра. Сопротивление воздуха учитывать не будем.

г) Составить дифференциальные уравнения по формулам:

К-во Просмотров: 723
Бесплатно скачать Курсовая работа: Движение тела под действием силы тяжести