Курсовая работа: Двойной интеграл в механике и геометрии
где - значение функции в точке
; и
, - площадь частичной области.
Сумма (*) называется n-й интегральной суммой для функции в области D, соответствующей данному разбиению этой области на n частичных областей.
Определение. Двойным интегралом от функции по области D называется предел, к которому стремится n -я интегральная сумма ( * ) при стремлении к нулю наибольшего диаметра частичных областей.
Записывается это так:
Читается: “двойной интеграл от на
по области D”. Выражение
, показывающее вид суммируемых слагаемых, называется подынтегральным выражением; функция
называется подынтегральной функцией,
- элементом площади, область D - областью интегрирования, наконец, переменные x и у называются переменными интегрирования.
Таким образом, можно сказать, что объем цилиндрического тела, ограниченного плоскостью Oxy, поверхностью и цилиндрической поверхностью с образующей, параллельной оси Oz, выражается двойным интегралом от функции
, взятым по области, являющейся основанием цилиндрического тела:
.
Аналогично теореме существования обыкновенного интеграла имеет место следующая теорема.
Теорема существования двойного интеграла.
Если функция непрерывна в области D, ограниченной замкнутой линией , то её n- я интегральная сумма стремится к пределу при стремлении к нулю наибольшего диаметра частичных областей . Этот предел , т . е . двойной интеграл
, не зависит от способа разбиения области D на частичные области
и от выбора в них точек Pi .
Двойной интеграл, разумеется, представляет собой число, зависящее только от подынтегральной функции и области интегрирования и вовсе не зависящее от обозначений переменных интегрирования, такчто, например,
.
Далее мы убедимся а том, что вычисление двойного интеграла может быть произведено посредством двух обыкновенных интегрирований.
2.Вычисление двойных интегралов.
При вычислении двойного интеграла элемент площади
нам удобно представить в ином виде. Будем разбивать область интегрирования D в плоскости Oxy на частичные области посредством двух систем координатных линий: x=const, y=const. Этими линиями служат прямые, параллельные соответственно оси Oy и оси Ox, а частичными областями - прямоугольники со сторонами, параллельными осям координат. Ясно, что площадь каждой частичной области
будет равна произведению соответствующих
и
. Поэтому элемент площади
мы запишем в виде
т.е. элемент площади в декартовых координатах является произведением дифференциалов независимых переменных. Мы имеем
. (*)
При вычислении двойного интеграла (*) мы будем опираться на тот факт, что он выражает объём V цилиндрического тела с основанием D, ограниченного поверхностью . Напомним, что мы уже занимались задачей об объёме тела, когда рассматривали применения определённого интеграла к задачам геометрии и получили формулу
(**)
Рис.3
где S(х) - площадьпоперечногосечения тела плоскостью, перпендикулярной к оси абсцисс, а и
- уравнения плоскостей,ограничивающих тело. Применим теперь этуформулу к вычислениюдвойного интеграла
Предположим сначала, что область интегрирования D удовлетворяет следующему условию: любаяпрямая, параллельная оси Ox или Oy, пересекаетграницу области не более чем в двухточках. Соответствующее цилиндрическое тело изображено нарис.3
Область D заключимвнутрь прямоугольника
стороны которого касаются границы области в точках А, В, С, Е. Интервал [а, b] является ортогональной проекцией области D на ось Ох, а интервал [c, d] - ортогональной проекцией области D на ось Oy. На рис.5 область D показана в плоскости Оху.
Точками A и C граница разбивается на две линии: ABC и AEC, каждая из которых пересекается с любой прямой, параллельной оси Oy, в одной точке. Поэтому, их уравнения можно записать в форме, разрешенной относительно y:
(ABC),
(AEC).