Курсовая работа: Двойной интеграл в механике и геометрии
Если пластинка однородна, т.е. то формулы упрощаются :
где S - площадь пластинки.
в) Моменты инерции пластинки.
Моментом инерции материальной точки Р с массой m относительно какой-либо оси называется произведение массы на квадрат расстояния точки Р от этой оси.
Метод составления выражений для моментов инерции пластинки относительно осей координат совершенно такой же, какой мы применяли для вычисления статических моментов. Приведем поэтому только окончательные результаты, считая, что :
Отметим еще, что интеграл называется центробежным моментом инерции; он обозначается
.
В механике часто рассматривают полярный момент инерции точки, равный произведению массы точки на квадрат ее расстояния до данной точки - полюса. Полярный момент инерции пластинки относительно начала координат будет равен
4. Вычисление площадей и объёмов с помощью двойных интегралов.
а) Объём.
Как мы знаем, объем V тела, ограниченного поверхностью , где
- неотрицательная функция, плоскостью
и цилиндрической поверхностью, направляющей для которой служит граница области D, а образующие параллельны оси Oz, равен двойному интегралу от функции
по области D :
Пример 1. Вычислить объем тела, ограниченного поверхностями x=0, у=0, х+у+ z=1, z =0 (рис. 17).
Рис.17Рис.18
Решение. D - заштрихованная на рис. 17 треугольная область в плоскости Оху, ограниченная прямыми x=0, у=0, x+y=1. Расставляя пределы в двойном интеграле, вычислим объем:
Итак, куб. единиц.
Замечание 1 . Если тело, объем которого ищется, ограничено сверху поверхностью а снизу—поверхностью
, причем проекцией обеих поверхностей на плоскость Оху является область D, то объем V этого тела равен разности объемов двух “цилиндрических” тел; первое из этих цилиндрических тел имеет нижним основанием область D, а верхним - поверхность
второе тело имеет нижним основанием также область D, а верхним - поверхность
(рис.18).
Поэтому объём V равен разности двух двойных интегралов :
или
(1)
Легко, далее, доказать, что формула (1) верна не только в том случае, когда и
неотрицательны, но и тогда, когда
и
- любые непрерывные функции, удовлетворяющие соотношению
Замечание 2 . Если в области D функция меняет знак, то разбиваем область на две части: 1) область D1 где
2) область D2 ,где
. Предположим, что области D1 и D2 таковы, что двойные интегралы по этим областям существуют. Тогда интеграл по области D1 будет положителен и будет равен объему тела, лежащего выше плоскости Оху. Интеграл по D2 будет отрицателен и по абсолютной величине равен объему тела, лежащего ниже плоскости Оху, Следовательно, интеграл по D будет выражать разность соответствующих объемов.
б) Вычисление площади плоской области.
Если мы составим интегральную сумму для функции по области D, то эта сумма будет равна площади S,
при любом способе разбиения. Переходя к пределу в правой части равенства, получим
Если область D правильная , то площадь выразится двукратным интегралом
К-во Просмотров: 685
Бесплатно скачать Курсовая работа: Двойной интеграл в механике и геометрии
|