Курсовая работа: Двойной интеграл в механике и геометрии
Если изменим порядок интегрирования, то результат уже не удастся записать в виде одного повторного интеграла, так как линия OBA имеет на разных участках разные уравнения.
Рис.8
Разбивая область D на две : OBC и CBA, получим
Этот пример показывает, как важно с самого начала продумать порядок интегрирования.
Формулы (А) и (Б) сведения двойного интеграла к повторному справедливы и для случая областей более общего вида. Так, формула (А) применима к области, указанной на рис.9, а формула (Б) - к области, изображенной на рис.10. В случае области ещё более общего вида (Рис.11) двойной интеграл следует разбить на сумму интегралов по более простым областям, а затем каждый из них сводить отдельно к повторному, пользуясь формулами (А) и (Б).
Рассмотрим теперь несколько примеров, связанных с вычислением двойных интегралов.
Примеры. 1) Найдём двойной интеграл от функции
по прямоугольной области D
Геометрически I выражает объём четырёхугольной призмы
(рис.12), основанием которой служит прямоугольник D, усечённый плоскостью .
Возьмём повторный интеграл сначала по y, затем по x:
То же самое получим, интегрируя сначала по x, а затем по y:
2) Вычислим двойной интеграл
по области D, ограниченной линиями y=x и y=x2 . Область D
изображена на рис.13. Интегрируя сначала по y, а потом по x,
получаем
Правильность результата можно проверить, изменив порядок интегрирования :