Курсовая работа: Интерполяция функции одной переменной методом Ньютона
Пусть и» отрезке задана сетка со
и в ее узлах заданы значения функции , равные
.
Требуется построить интерполянту — функцию , совпадающую с функцией в узлах сетки:
.
Основная цель интерполяции — получить быстрый (экономичный) алгоритм вычисления значений для значений , не содержащихся в таблице данных.
2. Интерполяция по Ньютону
Дана табличная функция:
i | ||
0 | ||
1 | ||
2 | ||
.. | .. | .. |
n |
Или
, (1)
Точки с координатами называются узловыми точками или узлами.
Количество узлов в табличной функции равно N=n+1.
Необходимо найти значение этой функции в промежуточной точке, например, , причем . Для решения задачи используется интерполяционный многочлен.
Интерполяционный многочлен по формуле Ньютона имеет вид:
где n – степень многочлена,
Интерполяционная формула Ньютона формула позволяет выразить интерполяционный многочлен через значение в одном из узлов и через разделенные разности функции , построенные по узлам .
Сначала приведем необходимые сведения о разделенных разностях.
Пусть в узлах
,
известны значения функции . Предположим, что среди точек , , нет совпадающих. Разделенными разностями первого порядка называются отношения
, ,.
Будем рассматривать разделенные разности, составленные по соседним узлам, т. е. выражения
.
По этим разделенным разностям первого порядка можно построить разделенные разности второго порядка:
,
,