Курсовая работа: Интерполяция функции одной переменной методом Ньютона

Аннотация

Пояснительная записка курсовой работы "Интерполяция функции одной переменной методом Ньютона" содержит в себе введение, анализ задания описанием входных и выходных данных, обзор литературных источников, описание математической модели и методов вычислительной математики, пояснения к алгоритму, текст программы, инструкцию. При изучении дисциплины "Информатика" для написания курсовой работы использовались различные литературные источники, которые перечислены в настоящем документе. В данной курсовой работе приведена программа, которая применяется для интерполяции таблично заданной функции методом Ньютона. В ней был использован метод структурного программирования для облегчения написания и отладки программы, а также повышения ее наглядности и читаемости. Целью написания данной работы было получение и закрепление практических навыков разработки алгоритмов различными методами. Представленная программа реализована на языке программирования Pascal. Пояснительная записка содержит 25 листов, на которых размещено два рисунка, текст программы и описание программы и алгоритма.


Содержание

Введение

Анализ задания

Математическая модель задачи

Программирование функции формулы Ньютона

Обзор литературных источников

Разработка программы по схеме алгоритма

Инструкция пользования программой

Текст программы

Исходные данные и результат решения контрольного примера

Заключение

Список использованных источников


Введение

Современное развитие физики и техники тесно связано с использованием электронных вычислительных машин (ЭВМ). В настоящее время ЭВМ стали обычным оборудованием многих институтов и конструкторских бюро. Это позволило от простейших расчетов и оценок различных конструкций или процессов перейти к новой стадии работы - детальному математическому моделированию (вычислительному эксперименту), которое существенно сокращает потребность в натурных экспериментах, а в ряде случаев может их заменить.

Сложные вычислительные задачи, возникающие при исследовании физических и технических проблем, можно разбить на ряд элементарных -таких как вычисление интеграла, решение дифференциального уравнения и т. п. Многие элементарные задачи являются несложными и хорошо изучены. Для этих задач уже разработаны методы численного решения, и нередко имеются стандартные программы решения их на ЭВМ. Есть и достаточно сложные элементарные задачи; методы решения таких задач сейчас интенсивно разрабатываются.

В связи с этим современный специалист с высшим образованием должен обладать не только высоким уровнем подготовки по профилю своей специальности, но и хорошо знать математические методы решения инженерных задач, ориентироваться на использование вычислительной техники, практически освоить принципы работы на ЭВМ.


Анализ задания

В качестве входных данных использованы:

1. Количество узлов.

2. Табличные значения функции.

Выходными данными, т.е. результатом программы является:

1. Значения таблично заданной функции в промежуточных значениях.

2. График полинома.


Математическая модель задачи

При выполнении курсовой работы была выбрана следующая математическая модель:

Интерполяция и приближение функций.

1. Постановка задачи.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 706
Бесплатно скачать Курсовая работа: Интерполяция функции одной переменной методом Ньютона