Курсовая работа: Использование метода ветвей и границ при адаптации рабочей нагрузки к параметрам вычислительного процесса

Эта матрица называется матрицей переходных вероятностей или матрицей переходов. Для неё справедливо выражение , . Матрица переходных вероятностей обязательно является квадратной матрицей с неотрицательными элементами, образующими по строкам единичную сумму; матрица такого рода называется стохастической. В случае, когда вероятности перехода не зависят от времени, а зависят только от величины τ и не изменяются при сдвиге вдоль временной оси, цепь Маркова называется однородной. Для такой цепи задаётся матрица

.

Вероятности перехода представляют собой важнейшие характеристики любой марковской цепи. Однако они по определению являются условными, и поэтому знание матрицы переходных вероятностей не полностью определяет цепь Маркова. Если отнести матрицу переходов к первому шагу, определяющему начало работы системы, то для исключения условностей необходимо задать ещё вероятности начальных состояний.

Вероятности начальных состояний , ,…, являются безусловными вероятностями и образуют матрицу-строку , сумма элементов которой по условию нормировки должна быть равна 1.

Матрица переходов даёт исчерпывающее представление о вероятностях возможных переходов за один шаг. Естественно возникает вопрос: как рассчитать вероятности того, что система, находящаяся в данный момент в состоянии si , переходит в состояние sj за r шагов. Матрица переходов за r шагов P(r) вычисляется как r-я степень матрицы перехода за один шаг P(r)=pr . Безусловные вероятности системы на r-м шаге определяются из выражений: .

Различают цепи эргодические и поглощающие. Это различие основано на классификации состояний. Состояние si называется невозвратным, если существуют такие состояния sj () и число шагов r, что pij (r)>0, но pij (q)=0 для всех q. Все остальные состояния называются возвратными. Таким образом, из невозвратного состояния всегда можно с положительной вероятностью и за какое-либо число шагов перейти в некоторое другое состояние. В то же время вернуться из этого состояния в первоначальное невозможно.

Если выбрать такие состояния si и sj , что для них при некоторых r и q выполняется неравенство pij (r)>0, pji (r)>0, то они называются сообщающимися. Если sj сообщается с si , а si с sk , то sj сообщается с sk . Это обстоятельство позволяет разделить множество возвратных состояний на классы (подмножества) сообщающихся состояний. Состояния, принадлежащие к различным классам, не сообщаются между собой. Если множество возвратных состояний состоит из одного класса, то оно называется эргодическим. Существуют так называемые поглощающие состояния, например если si – поглощающее состояние, то pii =1, pij =0. Цепи Маркова, не содержащие возвратные множества и образующие эргодическое множество, называются эргодическими. Свойства и методы расчетов параметров поглощающих и эргодических цепей различны.

Для непрерывной цепи Маркова вводится понятие плотности вероятности перехода (интенсивность потока событий) как предела отношения вероятности перехода системы за время Δt из состояния i в состояние j к длине промежутка:

().


Если λij не зависит от t, то есть от того, в какой момент начинается Δt, то непрерывная цепь Маркова называется однородной, в противном случае она называется неоднородной.

Однородная цепь Маркова характеризуется тем, что все потоки, переводящие систему из одного состояния в другое, являются простейшими, то есть стационарными пуассоновскими потоками. При этом время непрерывного пребывания цепи в каждом состоянии распределено по экспоненциальному закону.

Для неоднородной цепи промежутки времени между соседними событиями распределены не по показательному закону.

Если непрерывная цепь Маркова является однородной и между любыми её двумя состояниями существует маршрут, то она эргодичная. Кроме того, если вероятности состояний системы pj не зависят от времени наблюдения системы и совпадают с её начальными вероятностями состояний и стационарными вероятностями, т.е. , то режим цепи является стационарным.

Отметим, что понятия «стационарность управляющих потоков» и «стационарный режим» совершенно разные и из первого не следует второе. Таким образом, однородная непрерывная цепь Маркова определяется начальным распределением вероятностей , матрицей интенсивностей [λij ] простейших потоков, где λij =pij λi , вектором экспоненциально распределённых времён пребывания в состояниях с параметрами {1/μ1 , 1/μ2 , …, 1/μn }.

Главное отличие полумарковского процесса от цепи Маркова состоит в отказе от требования, чтобы распределения времени пребывания в каждом состоянии подчинялись показательному закону. Обычно полумарковский процесс задаётся начальным распределением вероятностей , матрицей переходных вероятностей [pij ] и совокупностью произвольных функций распределения времени пребывания в состояниях .

В моменты переходов из одного состояния в другое полумарковский процесс обладает марковским свойством. Если рассматривать полумарковский процесс только в моменты переходов, то получающаяся при этом марковская цепь с дискретным временем называется вложенной марковской цепью (так как она содержится в полумарковском процессе). Вложенная цепь имеет то же пространство состояний S и тот же вектор P(0) начального распределения вероятностей состояний, что и полумарковский процесс, а матрицей переходов вложенной цепи является матрица P=[pij ] полумарковского процесса.

Для эргодических полумарковских процессов, как и для эргодических марковских цепей, характерно наличие стационарного режима.


2. Метод Монте-Карло

Различные методы и приборы для определения параметров и характеристик случайных процессов можно объединить в две группы. Первую группу составляют приборы для определения корреляционных функций (корреляторы), спектральных плотностей (спектрометры), математических ожиданий, дисперсий, законов распределения и прочих случайных процессов и величин.

Все приборы первой группы можно разделить на две подгруппы. Одни определяют характеристики записанных случайных сигналов за достаточно большое время, намного превышающее время реализации самого случайного процесса. Другие (они в последнее время вызывают наибольший интерес) позволяют получать характеристики случайного процесса оперативно, в такт с поступлением информации при натурных испытаниях новых систем управления, так как, пользуясь их показаниями, можно непосредственно изменять процесс управления и в ходе эксперимента наблюдать за результатами этих изменений.

Вторая группа содержит методы и приборы, предназначенные для исследования случайных процессов и главным образом систем управления, в которых присутствуют случайные сигналы, на универсальных цифровых и аналоговых вычислительных машинах. Иногда для таких исследований приходится создавать специализированные вычислительные машины цифрового, аналогового или чаще всего аналого-цифрового (гибридного) типа, так как существующие типовые машины не приспособлены для решения некоторых задач.

Широко применяется на практике метод Монте-Карло (метод статических испытаний). Его основная идея чрезвычайно проста и заключается по существу в математическом моделировании на вычислительной машине тех случайных процессов и преобразований с ними, которые имеют место в реальной системе управления. Этот метод в основном реализуется на цифровых и, реже, на аналоговых вычислительных машинах.

Можно утверждать, что метод Монте-Карло остаётся чистым методом моделирования случайных процессов, чистым математическим экспериментом, в известном смысле лишённым ограничений, свойственным другим методам. Рассмотрим данный метод применительно к решению различных задач управления.

2.1 Общая характеристика метода Монте-Карло

Как уже указывалось, идея метода Монте-Карло (или метода статистического моделирования) очень проста и заключается в том, что в вычислительной машине создаётся процесс преобразования цифровых данных, аналогичный реальному процессу. Вероятностные характеристики обоих процессов (реального и смоделированного) совпадают с какой-то точностью.

Допустим, необходимо вычислить математическое ожидание случайной величины X, подчиняющейся некоторому закону распределения F(x). Для этого в машине реализуют датчик случайных чисел, имеющий данное распределение F(x), и по формуле, которую легко запрограммировать, определяют оценку математического ожидания:

.

Каждое значение случайной величины xi представляется в машине двоичным числом, которое поступает с выхода датчика случайных чисел на сумматор. Для статистического моделирования рассматриваемой задачи требуется N-кратное повторение решения.

Рассмотрим ещё один пример. Производится десять независимых выстрелов по мишени. Вероятность попадания при одном выстреле задана и равна p. Требуется определить вероятность того, что число попаданий будет чётным, т.е. 0, 2, 4, 6, 8, 10. Вероятность того, что число попаданий будет 2k, равна:

К-во Просмотров: 277
Бесплатно скачать Курсовая работа: Использование метода ветвей и границ при адаптации рабочей нагрузки к параметрам вычислительного процесса