Курсовая работа: Использование метода ветвей и границ при адаптации рабочей нагрузки к параметрам вычислительного процесса
.
В цифровой вычислительной машине имеется конечное число разрядов k. Поэтому максимальное количество несовпадающих между собой чисел равно 2k . В связи с этим в машине можно реализовать дискретную совокупность случайных чисел, т.е. конечное множество чисел, имеющих равномерный закон распределения. Такое распределение называется квазиравномерным. Возможные значения реализации дискретного псевдослучайного числа в вычислительной машине с k разрядами будут иметь вид:
. (3)
Вероятность каждого значения (3) равна 2- k . Эти значения можно получить следующим образом
.
Случайная величина имеет математическое ожидание
.
Учитывая, что
и выражение для конечной суммы геометрической прогрессии
, (4)
получаем:
. (5)
Аналогично можно определить дисперсию величины :
,
где
,
откуда
,
или, используя формулу (4), получаем:
. (6)
Согласно формуле (5) оценка величины ξ* получается смещённой при конечном k. Это смещение особенно сказывается при малом k. Поэтому вместо вводят оценку
, (7)
где
.
Очевидно, что случайная величина ξ в соответствии с соотношением (3) может принимать значения
, i=0,1,2,…, 2k -1
с вероятностью p=1/2k .