Курсовая работа: Исследование движения механической системы с двумя степенями свободы
(5.1.14)
При действии внешнего момента, обеспечивающего равномерное вращение, уравнение (5.1.14) примет вид:
(5.3.1)
Отсюда:
(5.2.2)
Сравним с полученным ранее значением:
(3.2.2)
Итак, два разных способа определения внешнего момента дали один результат.
6. Определение положений равновесия механической системы и исследование их устойчивости
Важным случаем движения механических систем является их колебательное движение. Колебания – это повторяющиеся движения механической системы относительно некоторого ее положения, происходящие более или менее регулярно во времени. В курсовой работе рассматривается колебательное движение механической системы относительно положения равновесия (относительного или абсолютного).
Механическая система может совершать колебания в течение достаточно длительного промежутка времени только вблизи положения устойчивого равновесия. Поэтому перед тем, как составить уравнения колебательного движения, надо найти положения равновесия и исследовать их устойчивость.
Согласно основному уравнению статики, для того чтобы механическая система находилась в равновесии, необходимо и достаточно, чтобы в этой системе были равны нулю все обобщенные силы:
(6.1)
– обобщённые силы; – число обобщённых координат в механической системе.
В нашем случае механическая система находится в потенциальном силовом поле; из уравнений (6.1) получаем следующие условия равновесия:
(6.2)
Следовательно, в положении равновесия потенциальная энергия имеет экстремальное значение. Не всякое равновесие, определяемое вышеприведенными формулами, может быть реализовано практически. В зависимости от поведения системы при отклонении от положения равновесия говорят об устойчивости или неустойчивости данного положения. Достаточные условия устойчивости положений равновесия для консервативных систем определяются теоремой Лагранжа – Дирихле: «Положение равновесия консервативной механической системы устойчиво, если в нём потенциальная энергия системы имеет изолированный минимум».
Определим положения равновесия для заданной механической системы, используя ранее найденные обобщённые силы (5.1.11) и (5.1.12) из системы уравнений:
(6.4)
Решение системы средствами MathCAD приведено в приложении Б к курсовой работе.
Для нашей механической системы имеем:
Первое положение равновесия: , .
Второе положение равновесия: , .
Используя теорему Лагранжа – Дирихле определяем, что первое положение равновесия является не устойчивым, а второе – устойчивым.
Рисунок 6.1. Положения равновесия механической системы
Найдем вторые производные от потенциальной энергии по обобщенным координатам:
(6.5)