Курсовая работа: Колебания кристаллической решетки
(23).
Амплитуды колебаний маленького и большого атомов A и B в общем случае разные как по абсолютной величине, так и по фазе.
После подстановки (23) в (22) получим линейную однородную систему уравнений для A и B :
–M 1 ω 2 A = γ (Beika +B –2A )
–M 2 ω 2 B = γ (A +Ae –ika –2B ) (24).
Перепишем ее в стандартном виде:
(25)
Такая система имеет решения лишь в том случае, когда ее определитель равен нулю. Приравнивая нулю определитель (25) получим уравнение, связывающее ω и k , т. е. дисперсионное уравнение:
M 1 M 2 ω 4 – 2γ (M 1 +M 2 )ω 2 +2γ 2 (1–cos ka ) = 0 (26).
Это уравнение удобно переписать, использую приведенную массу атомов примитивной ячейки μ :
(27).
(28)
Его решения имеют вид:
(29)
или (30).
Величина 4μ 2 /(M 1 M 2 ) при любых M 1 , M 2 не превосходит единицы, поэтому подкоренное выражение всегда неотрицательно.
1.3. Трехмерный кристалл
Мы рассмотрели колебания в одномерной цепочке. Подобным образом могут быть описаны и колебания решетки трехмерного кристалла.
Предположим, что примитивная ячейка кристалла состоит из l атомов. Каждый атом ячейки будем обозначать индексом s , этот индекс принимает l различных значений. Любой атом кристалла однозначно определяется радиус-вектором , задающим положение ячейки (соответствующего узла решетки Браве), и индексом s , характеризующим положение атома внутри ячейки (тип атома).
Смещение атомов при колебаниях решетки является линейной комбинацией плоских гармонических волн (точнее, их вещественных частей): (40).
Частота колебаний одинакова для всех атомов кристалла. Амплитуда колебаний зависит от типа атома (индекса s ), тоесть одинакова для всех однотипных атомов. Направление вектора амплитуды может, вообще говоря, быть каким угодно.
Индекс j обозначает ветвь колебаний. Волновой вектор и ветвь j однозначно определяют частоту и относительные амплитуды атомов всех типов. Для каждой ветви зависимости и являются непрерывными функциями.
Если примитивная ячейка кристалла содержит l атомов, то число ветвей равно 3l . Таким образом, каждому значению волнового вектора соответствуют 3l разных колебаний.
Три из этих ветвей – акустические, в предельном случае длинных волн их частота пропорциональна длине волнового вектора ω = |k |. Однако скорость звука зависит от направления распространения волны, то есть от направления вектора . В случае длинноволновых акустических колебаний амплитуды всех атомов примитивной ячейки примерно одинаковы.
Остальные 3l –3 ветвей – оптические , при их частота отлична от нуля.
По направлению амплитуды относительно волнового вектора акустические колебания можно разделить на продольное и два поперечных. Как правило, скорость звука у продольного колебания больше, чем у поперечных.
У кристаллов со структурой алмаза или цинковой обманки примитивная ячейка содержит 2 атома. Соответственно, кроме трех акустических, эти кристаллы обладают тремя оптическими ветвями колебаний, из которых также можно выделить продольную и две поперечных ветви.
Как и в одномерном случае, волновые вектора, отличающиеся друг от друга на вектор обратной решетки, соответствуют одному и тому же колебанию. По этой причине достаточно рассматривать волновые вектора, лежащие в первой зоне Бриллюэна.
Количество разрешенных волновых векторов в зоне Бриллюэна равно N = V /v 0 – числу примитивных ячеек в нормировочном объеме кристалла V = L 3 (v 0 – объем примитивной ячейки). Действительно, плотность разрешенных волновых векторов в обратном пространстве равна V /(2π )3 , т. е. в объеме обратного пространства Δ 3 k содержится Δ 3 k · V /(2π )3 разрешенных волновых векторов. Объем зоны Бриллюэна – объем примитивной ячейки обратной решетки — равен (2π )3 /v 0 , и для числа разрешенных состояний получаем (2π )3 /v 0 · V /(2π )3 = V /v 0 = N .