Курсовая работа: Конечные группы со сверхразрешимыми подгруппами четного индекса

Во второй - конечные группы со сверхразрешимыми подгруппами непримарного индекса. Здесь представлены:

B. неразрешимая группа, у которой все подгруппы непримарного индекса сверхразрешимы, изоморфна одной из следующих групп:

1) или , где - 5-группа;

2) , где - 3-группа.

C. - разрешимая недисперсивная группа, у которой все подгруппы непримарного индекса сверхразрешимы. Тогда бипримарна, и - дисперсивная группа порядка , где .

1. конечная группа, в которой каждая подгруппа непримарного индекса сверхразрешима. Тогда в любой подгруппе и в любой фактор-группе группы каждая подгруппа непримарного индекса сверхразрешима.

2. - конечная группа и - простое число, делящее порядок . Если в нет -замкнутых подгрупп Шмидта, то -нильпотентна.

3. - сверхразрешимая группа Шмидта с нормальной силовской -подгруппой и циклической силовской -подгруппой , то .

4. группа дисперсивна по Оре, если в ней все подгруппы Шмидта сверхразрешимы.

5. конечная группа со сверхразрешимыми подгруппами непримарного индекса не более чем трипримарна.

6. группа порядка , где и - простые числа, и не делит , нильпотентна.

7. разрешимая группа со сверхразрешимыми подгруппами непримарного индекса дисперсивна.

8. - подгруппа примарного индекса конечной группы , то .

9. - группа порядка , где и - простые числа, и . Пpeдnoлoжим, что каждая подгруппа непримарного индекса сверхразрешима. Тогда либо -группа, либо группа Шмидта , где - элементарная абелева, или группа кватернионов.

10. - группа порядка , где и - простые числа, и . Предположим, что каждая подгруппа непримарного индекса сверхразрешима. Тогда факторгруппа либо -группа, либо изоморфна и делит .

Третий посвящен неразрешимым группам с заданными подгруппами непримарного индекса. Здесь представлены:

D. класс замкнут относительно прямых произведений и разрешим. Если в конечной неразрешимой группе нет неединичных нормальных -подгрупп, то изоморфна одной из следующих групп: и - простое число или 9; или и .

1. конечная неразрешимая группа принадлежит , то , где , а и .

2. класс замкнут относительно прямых произведений, и - неразрешимая группа, принадлежащая . Если - минимальная нормальная в подгруппа, то либо , либо - простая неабелева группа, и , где .

3. класс разрешим и - простая неабелева группа из , то:

1) , , и или - простое число;

2) , и - простое число;

3) , , ;

4) , или , или соответственно.

В каждом параграфе подробно изучена соответствующая тема с теоремами леммами и доказательствами последних.

1. Конечные группы со сверхразрешимыми подгруппами четного индекса

Строение конечных минимальных несверхразрешимых групп хорошо известно. В частности, они дисперсивны и их порядки делятся не более чем на три различных простых числа. Если условие сверхразрешимости накладывать не на все подгруппы, а только на некоторые, то возникают недисперсивные и даже неразрешимые группы. В описаны конечные группы со сверхразрешимыми подгруппами непримарного индекса. В настоящей заметке исследуется строение конечных групп со сверхразрешимыми подгруппами четного индекса. Доказывается следующая

A. Пусть - конечная группа и . Тогда и только тогда в группе все подгруппы четного индекса сверхразрешимы, когда выполняется одно из следующих утверждений:

1) - 2-группа;

2) - группа Фробениуса, ядро которой - минимальная нормальная подгруппа порядка , где - показатель 2 по каждому простому нечетному делителю порядка группы;

К-во Просмотров: 221
Бесплатно скачать Курсовая работа: Конечные группы со сверхразрешимыми подгруппами четного индекса